{"title":"基于表面等离子体共振的癌症细胞检测生物传感器技术研究进展","authors":"B. Karki, Arun Uniyal, A. Pal, V. Srivastava","doi":"10.1155/2022/1476254","DOIUrl":null,"url":null,"abstract":"Efforts have been made to enhance the surface sensitivity of the conventional surface plasmon resonance biosensor. To improve the sensitivity, a unique two-dimensional heterostructure layer of titanium disilicide and black phosphorus layer has been deposited over the metal surface. The titanium disilicide (TiSi2) nanosheet is placed in between silver (Ag) and black phosphorus (BP) films in the Kretschmann arrangement. This biosensor executes better over a wide range of refractive index variations, including biological cell distribution in individual blood. It may become a fast method of detecting cancerous cells and the several variants of corona and other viruses that become pandemic. Using the finite element method-based simulation technique, the sensitivity obtained as 195.4 degree/RIU, 167.6 degree/RIU, 212.4 degree/RIU, 168.4 degree/RIU, 212.4 degree/RIU, 186.6 degree/RIU, 218.6 degree/RIU, 195.4 degree/RIU, 203.6 degree/RIU, 202.6 degree/RIU 203.6 degree/RIU, and 202.6 for basal (skin cancer), basal (normal cell), HeLa (cervical cancer), MCF-7 (breast cancer), HeLa (normal cell), Jurkat (blood cancer), Jurkat (normal cell), PCI-2 (adrenal gland cancer), PCI-2 (normal cell), MDA-MB-231 (breast cancer), MDA-MB-231 (normal cell), MCF-7 (breast cancer), and MCF-7 (normal cell), respectively, and other performance parameters such as detection accuracy, figure of merit, and full width and half maximum (FWHM) are also evaluated.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Advances in Surface Plasmon Resonance-Based Biosensor Technologies for Cancer Cell Detection\",\"authors\":\"B. Karki, Arun Uniyal, A. Pal, V. Srivastava\",\"doi\":\"10.1155/2022/1476254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efforts have been made to enhance the surface sensitivity of the conventional surface plasmon resonance biosensor. To improve the sensitivity, a unique two-dimensional heterostructure layer of titanium disilicide and black phosphorus layer has been deposited over the metal surface. The titanium disilicide (TiSi2) nanosheet is placed in between silver (Ag) and black phosphorus (BP) films in the Kretschmann arrangement. This biosensor executes better over a wide range of refractive index variations, including biological cell distribution in individual blood. It may become a fast method of detecting cancerous cells and the several variants of corona and other viruses that become pandemic. Using the finite element method-based simulation technique, the sensitivity obtained as 195.4 degree/RIU, 167.6 degree/RIU, 212.4 degree/RIU, 168.4 degree/RIU, 212.4 degree/RIU, 186.6 degree/RIU, 218.6 degree/RIU, 195.4 degree/RIU, 203.6 degree/RIU, 202.6 degree/RIU 203.6 degree/RIU, and 202.6 for basal (skin cancer), basal (normal cell), HeLa (cervical cancer), MCF-7 (breast cancer), HeLa (normal cell), Jurkat (blood cancer), Jurkat (normal cell), PCI-2 (adrenal gland cancer), PCI-2 (normal cell), MDA-MB-231 (breast cancer), MDA-MB-231 (normal cell), MCF-7 (breast cancer), and MCF-7 (normal cell), respectively, and other performance parameters such as detection accuracy, figure of merit, and full width and half maximum (FWHM) are also evaluated.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1476254\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/1476254","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Advances in Surface Plasmon Resonance-Based Biosensor Technologies for Cancer Cell Detection
Efforts have been made to enhance the surface sensitivity of the conventional surface plasmon resonance biosensor. To improve the sensitivity, a unique two-dimensional heterostructure layer of titanium disilicide and black phosphorus layer has been deposited over the metal surface. The titanium disilicide (TiSi2) nanosheet is placed in between silver (Ag) and black phosphorus (BP) films in the Kretschmann arrangement. This biosensor executes better over a wide range of refractive index variations, including biological cell distribution in individual blood. It may become a fast method of detecting cancerous cells and the several variants of corona and other viruses that become pandemic. Using the finite element method-based simulation technique, the sensitivity obtained as 195.4 degree/RIU, 167.6 degree/RIU, 212.4 degree/RIU, 168.4 degree/RIU, 212.4 degree/RIU, 186.6 degree/RIU, 218.6 degree/RIU, 195.4 degree/RIU, 203.6 degree/RIU, 202.6 degree/RIU 203.6 degree/RIU, and 202.6 for basal (skin cancer), basal (normal cell), HeLa (cervical cancer), MCF-7 (breast cancer), HeLa (normal cell), Jurkat (blood cancer), Jurkat (normal cell), PCI-2 (adrenal gland cancer), PCI-2 (normal cell), MDA-MB-231 (breast cancer), MDA-MB-231 (normal cell), MCF-7 (breast cancer), and MCF-7 (normal cell), respectively, and other performance parameters such as detection accuracy, figure of merit, and full width and half maximum (FWHM) are also evaluated.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.