原生动物DNA损伤诱导蛋白1 (Ddi1)的结构和功能研究

IF 2.7 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Research in Structural Biology Pub Date : 2022-01-01 DOI:10.1016/j.crstbi.2022.05.003
Killivalavan Asaithambi , Iman Biswas , Kaza Suguna
{"title":"原生动物DNA损伤诱导蛋白1 (Ddi1)的结构和功能研究","authors":"Killivalavan Asaithambi ,&nbsp;Iman Biswas ,&nbsp;Kaza Suguna","doi":"10.1016/j.crstbi.2022.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Ddi1 is a multidomain protein that belongs to the ubiquitin receptor family of proteins. The Ddi1 proteins contain a highly conserved retroviral protease (RVP)-like domain along with other domains. The severity of opportunistic infections, caused by parasitic protozoa in AIDS patients, was found to decline when HIV protease inhibitors were used in antiretroviral therapy. Parasite growth was shown to be suppressed by a few of the inhibitors targeting Ddi1 present in these parasites. In this study, the binding of HIV protease inhibitors to the RVP domain of Ddi1 from <em>Toxoplasma gondii</em> and <em>Cryptosporidium hominis</em>; and the binding of ubiquitin to the ubiquitin-associated domain of Ddi1 from these two parasites were established using Biolayer Interferometry. The crystal structures of the RVP domains of Ddi1 from <em>T. gondii</em> and <em>C. hominis</em> were determined; they form homodimers similar to those observed in HIV protease and the reported structures of the same domain from <em>Saccharomyces cerevisiae</em>, <em>Leishmania major</em> and humans. The native form of the domain showed an open dimeric structure and a normal mode analysis revealed that it can take up a closed conformation resulting from relative movements of the subunits. Based on the crystal structure of the RVP domain of Ddi1 from <em>L. major</em>, a seven residue peptide inhibitor was designed and it was shown to bind to the RVP domain of Ddi1 from <em>L. major</em> by Biolayer Interferometry. This peptide was modified using computational methods and was shown to have a better affinity than the initial peptide.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665928X22000150/pdfft?md5=71c62a69e55ec00d3ea56e5e57a30aac&pid=1-s2.0-S2665928X22000150-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural and functional insights into the DNA damage-inducible protein 1 (Ddi1) from protozoa\",\"authors\":\"Killivalavan Asaithambi ,&nbsp;Iman Biswas ,&nbsp;Kaza Suguna\",\"doi\":\"10.1016/j.crstbi.2022.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ddi1 is a multidomain protein that belongs to the ubiquitin receptor family of proteins. The Ddi1 proteins contain a highly conserved retroviral protease (RVP)-like domain along with other domains. The severity of opportunistic infections, caused by parasitic protozoa in AIDS patients, was found to decline when HIV protease inhibitors were used in antiretroviral therapy. Parasite growth was shown to be suppressed by a few of the inhibitors targeting Ddi1 present in these parasites. In this study, the binding of HIV protease inhibitors to the RVP domain of Ddi1 from <em>Toxoplasma gondii</em> and <em>Cryptosporidium hominis</em>; and the binding of ubiquitin to the ubiquitin-associated domain of Ddi1 from these two parasites were established using Biolayer Interferometry. The crystal structures of the RVP domains of Ddi1 from <em>T. gondii</em> and <em>C. hominis</em> were determined; they form homodimers similar to those observed in HIV protease and the reported structures of the same domain from <em>Saccharomyces cerevisiae</em>, <em>Leishmania major</em> and humans. The native form of the domain showed an open dimeric structure and a normal mode analysis revealed that it can take up a closed conformation resulting from relative movements of the subunits. Based on the crystal structure of the RVP domain of Ddi1 from <em>L. major</em>, a seven residue peptide inhibitor was designed and it was shown to bind to the RVP domain of Ddi1 from <em>L. major</em> by Biolayer Interferometry. This peptide was modified using computational methods and was shown to have a better affinity than the initial peptide.</p></div>\",\"PeriodicalId\":10870,\"journal\":{\"name\":\"Current Research in Structural Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665928X22000150/pdfft?md5=71c62a69e55ec00d3ea56e5e57a30aac&pid=1-s2.0-S2665928X22000150-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Structural Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665928X22000150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665928X22000150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Ddi1是一种多结构域蛋白,属于泛素受体蛋白家族。Ddi1蛋白含有一个高度保守的逆转录病毒蛋白酶(RVP)样结构域和其他结构域。研究发现,在抗逆转录病毒治疗中使用HIV蛋白酶抑制剂后,艾滋病患者由寄生原生动物引起的机会性感染的严重程度有所下降。研究表明,这些寄生虫中的一些靶向Ddi1的抑制剂可以抑制寄生虫的生长。在本研究中,HIV蛋白酶抑制剂与刚地弓形虫和人隐孢子虫Ddi1 RVP结构域的结合;利用生物层干涉法确定了这两种寄生虫的泛素与Ddi1泛素相关结构域的结合。测定了刚地弓形虫和人猿弓形虫Ddi1 RVP结构域的晶体结构;它们形成同型二聚体,类似于在HIV蛋白酶中观察到的同型二聚体,以及报道的来自酿酒酵母、利什曼原虫和人类的相同结构域的结构。该结构域的天然形态为开放二聚体结构,正常模式分析表明,由于亚基的相对运动,它可以采取封闭的构象。基于L. major菌株Ddi1 RVP结构域的晶体结构,设计了一种7残基肽抑制剂,并通过生物层干涉法证实其能与L. major菌株Ddi1 RVP结构域结合。利用计算方法对该肽进行了修饰,结果表明该肽比初始肽具有更好的亲和力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural and functional insights into the DNA damage-inducible protein 1 (Ddi1) from protozoa

Ddi1 is a multidomain protein that belongs to the ubiquitin receptor family of proteins. The Ddi1 proteins contain a highly conserved retroviral protease (RVP)-like domain along with other domains. The severity of opportunistic infections, caused by parasitic protozoa in AIDS patients, was found to decline when HIV protease inhibitors were used in antiretroviral therapy. Parasite growth was shown to be suppressed by a few of the inhibitors targeting Ddi1 present in these parasites. In this study, the binding of HIV protease inhibitors to the RVP domain of Ddi1 from Toxoplasma gondii and Cryptosporidium hominis; and the binding of ubiquitin to the ubiquitin-associated domain of Ddi1 from these two parasites were established using Biolayer Interferometry. The crystal structures of the RVP domains of Ddi1 from T. gondii and C. hominis were determined; they form homodimers similar to those observed in HIV protease and the reported structures of the same domain from Saccharomyces cerevisiae, Leishmania major and humans. The native form of the domain showed an open dimeric structure and a normal mode analysis revealed that it can take up a closed conformation resulting from relative movements of the subunits. Based on the crystal structure of the RVP domain of Ddi1 from L. major, a seven residue peptide inhibitor was designed and it was shown to bind to the RVP domain of Ddi1 from L. major by Biolayer Interferometry. This peptide was modified using computational methods and was shown to have a better affinity than the initial peptide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
33
审稿时长
104 days
期刊最新文献
Assessment of Kaistella jeonii Esterase Conformational Dynamics in Response to Poly(ethylene terephthalate) Binding Editorial Board Table of Contents Integrative modeling of JCVI-Syn3A nucleoids with a modular approach The active site of the SGNH hydrolase-like fold proteins: Nucleophile–oxyanion (Nuc-Oxy) and Acid–Base zones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1