{"title":"通过主投影进行高维充分降维","authors":"Eugen Pircalabelu, A. Artemiou","doi":"10.1214/22-ejs1988","DOIUrl":null,"url":null,"abstract":": We develop in this work a new dimension reduction method for high-dimensional settings. The proposed procedure is based on a principal support vector machine framework where principal projections are used in order to overcome the non-invertibility of the covariance matrix. Using a series of equivalences we show that one can accurately recover the central subspace using a projection on a lower dimensional subspace and then applying an (cid:2) 1 penalization strategy to obtain sparse estimators of the sufficient directions. Based next on a desparsified estimator, we provide an inferential procedure for high-dimensional models that allows testing for the importance of variables in determining the sufficient direction. Theoretical properties of the methodology are illustrated and computational advantages are demonstrated with simulated and real data experiments.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-dimensional sufficient dimension reduction through principal projections\",\"authors\":\"Eugen Pircalabelu, A. Artemiou\",\"doi\":\"10.1214/22-ejs1988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": We develop in this work a new dimension reduction method for high-dimensional settings. The proposed procedure is based on a principal support vector machine framework where principal projections are used in order to overcome the non-invertibility of the covariance matrix. Using a series of equivalences we show that one can accurately recover the central subspace using a projection on a lower dimensional subspace and then applying an (cid:2) 1 penalization strategy to obtain sparse estimators of the sufficient directions. Based next on a desparsified estimator, we provide an inferential procedure for high-dimensional models that allows testing for the importance of variables in determining the sufficient direction. Theoretical properties of the methodology are illustrated and computational advantages are demonstrated with simulated and real data experiments.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ejs1988\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejs1988","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
High-dimensional sufficient dimension reduction through principal projections
: We develop in this work a new dimension reduction method for high-dimensional settings. The proposed procedure is based on a principal support vector machine framework where principal projections are used in order to overcome the non-invertibility of the covariance matrix. Using a series of equivalences we show that one can accurately recover the central subspace using a projection on a lower dimensional subspace and then applying an (cid:2) 1 penalization strategy to obtain sparse estimators of the sufficient directions. Based next on a desparsified estimator, we provide an inferential procedure for high-dimensional models that allows testing for the importance of variables in determining the sufficient direction. Theoretical properties of the methodology are illustrated and computational advantages are demonstrated with simulated and real data experiments.
期刊介绍:
The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.