{"title":"非交换环上歪斜多项式环的幂零图","authors":"M. Nikmehr","doi":"10.22108/TOC.2019.117529.1651","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring and $alpha$ be a ring endomorphism of $R$. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set $Z_N(R)^*$, and two distinct vertices $x$ and $y$ are connected by an edge if and only if $xy$ is nilpotent, where $Z_N(R)={xin R;|; xy; rm{is; nilpotent,;for; some}; yin R^*}.$ In this article, we investigate the interplay between the ring theoretical properties of a skew polynomial ring $R[x;alpha]$ and the graph-theoretical properties of its nilpotent graph $Gamma_N(R[x;alpha])$. It is shown that if $R$ is a symmetric and $alpha$-compatible with exactly two minimal primes, then $diam(Gamma_N(R[x,alpha]))=2$. Also we prove that $Gamma_N(R)$ is a complete graph if and only if $R$ is isomorphic to $Z_2timesZ_2$.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nilpotent graphs of skew polynomial rings over non-commutative rings\",\"authors\":\"M. Nikmehr\",\"doi\":\"10.22108/TOC.2019.117529.1651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a ring and $alpha$ be a ring endomorphism of $R$. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set $Z_N(R)^*$, and two distinct vertices $x$ and $y$ are connected by an edge if and only if $xy$ is nilpotent, where $Z_N(R)={xin R;|; xy; rm{is; nilpotent,;for; some}; yin R^*}.$ In this article, we investigate the interplay between the ring theoretical properties of a skew polynomial ring $R[x;alpha]$ and the graph-theoretical properties of its nilpotent graph $Gamma_N(R[x;alpha])$. It is shown that if $R$ is a symmetric and $alpha$-compatible with exactly two minimal primes, then $diam(Gamma_N(R[x,alpha]))=2$. Also we prove that $Gamma_N(R)$ is a complete graph if and only if $R$ is isomorphic to $Z_2timesZ_2$.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2019.117529.1651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2019.117529.1651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Nilpotent graphs of skew polynomial rings over non-commutative rings
Let $R$ be a ring and $alpha$ be a ring endomorphism of $R$. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set $Z_N(R)^*$, and two distinct vertices $x$ and $y$ are connected by an edge if and only if $xy$ is nilpotent, where $Z_N(R)={xin R;|; xy; rm{is; nilpotent,;for; some}; yin R^*}.$ In this article, we investigate the interplay between the ring theoretical properties of a skew polynomial ring $R[x;alpha]$ and the graph-theoretical properties of its nilpotent graph $Gamma_N(R[x;alpha])$. It is shown that if $R$ is a symmetric and $alpha$-compatible with exactly two minimal primes, then $diam(Gamma_N(R[x,alpha]))=2$. Also we prove that $Gamma_N(R)$ is a complete graph if and only if $R$ is isomorphic to $Z_2timesZ_2$.