{"title":"基于机器学习的心电信号普适分析","authors":"Aarathi S., Vasundra S.","doi":"10.1108/ijpcc-03-2021-0080","DOIUrl":null,"url":null,"abstract":"\nPurpose\nPervasive analytics act as a prominent role in computer-aided prediction of non-communicating diseases. In the early stage, arrhythmia diagnosis detection helps prevent the cause of death suddenly owing to heart failure or heart stroke. The arrhythmia scope can be identified by electrocardiogram (ECG) report.\n\n\nDesign/methodology/approach\nThe ECG report has been used extensively by several clinical experts. However, diagnosis accuracy has been dependent on clinical experience. For the prediction methods of computer-aided heart disease, both accuracy and sensitivity metrics play a remarkable part. Hence, the existing research contributions have optimized the machine-learning approaches to have a great significance in computer-aided methods, which perform predictive analysis of arrhythmia detection.\n\n\nFindings\nIn reference to this, this paper determined a regression heuristics by tridimensional optimum features of ECG reports to perform pervasive analytics for computer-aided arrhythmia prediction. The intent of these reports is arrhythmia detection. From an empirical outcome, it has been envisioned that the project model of this contribution is more optimal and added a more advantage when compared to existing or contemporary approaches.\n\n\nOriginality/value\nIn reference to this, this paper determined a regression heuristics by tridimensional optimum features of ECG reports to perform pervasive analytics for computer-aided arrhythmia prediction. The intent of these reports is arrhythmia detection. From an empirical outcome, it has been envisioned that the project model of this contribution is more optimal and added a more advantage when compared to existing or contemporary approaches.\n","PeriodicalId":43952,"journal":{"name":"International Journal of Pervasive Computing and Communications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning based pervasive analytics for ECG signal analysis\",\"authors\":\"Aarathi S., Vasundra S.\",\"doi\":\"10.1108/ijpcc-03-2021-0080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nPervasive analytics act as a prominent role in computer-aided prediction of non-communicating diseases. In the early stage, arrhythmia diagnosis detection helps prevent the cause of death suddenly owing to heart failure or heart stroke. The arrhythmia scope can be identified by electrocardiogram (ECG) report.\\n\\n\\nDesign/methodology/approach\\nThe ECG report has been used extensively by several clinical experts. However, diagnosis accuracy has been dependent on clinical experience. For the prediction methods of computer-aided heart disease, both accuracy and sensitivity metrics play a remarkable part. Hence, the existing research contributions have optimized the machine-learning approaches to have a great significance in computer-aided methods, which perform predictive analysis of arrhythmia detection.\\n\\n\\nFindings\\nIn reference to this, this paper determined a regression heuristics by tridimensional optimum features of ECG reports to perform pervasive analytics for computer-aided arrhythmia prediction. The intent of these reports is arrhythmia detection. From an empirical outcome, it has been envisioned that the project model of this contribution is more optimal and added a more advantage when compared to existing or contemporary approaches.\\n\\n\\nOriginality/value\\nIn reference to this, this paper determined a regression heuristics by tridimensional optimum features of ECG reports to perform pervasive analytics for computer-aided arrhythmia prediction. The intent of these reports is arrhythmia detection. From an empirical outcome, it has been envisioned that the project model of this contribution is more optimal and added a more advantage when compared to existing or contemporary approaches.\\n\",\"PeriodicalId\":43952,\"journal\":{\"name\":\"International Journal of Pervasive Computing and Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pervasive Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijpcc-03-2021-0080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpcc-03-2021-0080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Machine learning based pervasive analytics for ECG signal analysis
Purpose
Pervasive analytics act as a prominent role in computer-aided prediction of non-communicating diseases. In the early stage, arrhythmia diagnosis detection helps prevent the cause of death suddenly owing to heart failure or heart stroke. The arrhythmia scope can be identified by electrocardiogram (ECG) report.
Design/methodology/approach
The ECG report has been used extensively by several clinical experts. However, diagnosis accuracy has been dependent on clinical experience. For the prediction methods of computer-aided heart disease, both accuracy and sensitivity metrics play a remarkable part. Hence, the existing research contributions have optimized the machine-learning approaches to have a great significance in computer-aided methods, which perform predictive analysis of arrhythmia detection.
Findings
In reference to this, this paper determined a regression heuristics by tridimensional optimum features of ECG reports to perform pervasive analytics for computer-aided arrhythmia prediction. The intent of these reports is arrhythmia detection. From an empirical outcome, it has been envisioned that the project model of this contribution is more optimal and added a more advantage when compared to existing or contemporary approaches.
Originality/value
In reference to this, this paper determined a regression heuristics by tridimensional optimum features of ECG reports to perform pervasive analytics for computer-aided arrhythmia prediction. The intent of these reports is arrhythmia detection. From an empirical outcome, it has been envisioned that the project model of this contribution is more optimal and added a more advantage when compared to existing or contemporary approaches.