N. Abbas, P. Bortolotti, C. Kelley, J. Paquette, L. Pao, Nick Johnson
{"title":"采用分布式气动控制装置的大型风力涡轮机叶片气动伺服弹性协同优化","authors":"N. Abbas, P. Bortolotti, C. Kelley, J. Paquette, L. Pao, Nick Johnson","doi":"10.1002/we.2840","DOIUrl":null,"url":null,"abstract":"This work introduces automated wind turbine optimization techniques based on full aero-servo-elastic models and investigates the potential of trailing edge flaps to reduce the levelized cost of energy (LCOE) of wind turbines. The Wind Energy with Integrated Servo-control (WEIS) framework is improved to conduct the presented research. Novel methods for the generic implementation and tuning of trailing edge flap devices and their controller are also introduced. Primary flap and controller parameters are optimized to demonstrate potential maximum blade tip deflection reductions of 21 % . Concurrent design optimization (i.e., co-design) of a novel segmented wind turbine blade with trailing edge flaps and its controller is then conducted to demonstrate blade cost savings of 5 % . Additionally, rotor diameter co-design optimization is demonstrated to reduce the LCOE by 1.3 % without significant load increases to the tower. These results demonstrate the efficacy of control co-design optimization using trailing edge flaps, and the entirety of this work provides a foundation for numerous control co-design-oriented studies for distributed aerodynamic control devices.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Aero‐servo‐elastic co‐optimization of large wind turbine blades with distributed aerodynamic control devices\",\"authors\":\"N. Abbas, P. Bortolotti, C. Kelley, J. Paquette, L. Pao, Nick Johnson\",\"doi\":\"10.1002/we.2840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces automated wind turbine optimization techniques based on full aero-servo-elastic models and investigates the potential of trailing edge flaps to reduce the levelized cost of energy (LCOE) of wind turbines. The Wind Energy with Integrated Servo-control (WEIS) framework is improved to conduct the presented research. Novel methods for the generic implementation and tuning of trailing edge flap devices and their controller are also introduced. Primary flap and controller parameters are optimized to demonstrate potential maximum blade tip deflection reductions of 21 % . Concurrent design optimization (i.e., co-design) of a novel segmented wind turbine blade with trailing edge flaps and its controller is then conducted to demonstrate blade cost savings of 5 % . Additionally, rotor diameter co-design optimization is demonstrated to reduce the LCOE by 1.3 % without significant load increases to the tower. These results demonstrate the efficacy of control co-design optimization using trailing edge flaps, and the entirety of this work provides a foundation for numerous control co-design-oriented studies for distributed aerodynamic control devices.\",\"PeriodicalId\":23689,\"journal\":{\"name\":\"Wind Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/we.2840\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/we.2840","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Aero‐servo‐elastic co‐optimization of large wind turbine blades with distributed aerodynamic control devices
This work introduces automated wind turbine optimization techniques based on full aero-servo-elastic models and investigates the potential of trailing edge flaps to reduce the levelized cost of energy (LCOE) of wind turbines. The Wind Energy with Integrated Servo-control (WEIS) framework is improved to conduct the presented research. Novel methods for the generic implementation and tuning of trailing edge flap devices and their controller are also introduced. Primary flap and controller parameters are optimized to demonstrate potential maximum blade tip deflection reductions of 21 % . Concurrent design optimization (i.e., co-design) of a novel segmented wind turbine blade with trailing edge flaps and its controller is then conducted to demonstrate blade cost savings of 5 % . Additionally, rotor diameter co-design optimization is demonstrated to reduce the LCOE by 1.3 % without significant load increases to the tower. These results demonstrate the efficacy of control co-design optimization using trailing edge flaps, and the entirety of this work provides a foundation for numerous control co-design-oriented studies for distributed aerodynamic control devices.
期刊介绍:
Wind Energy offers a major forum for the reporting of advances in this rapidly developing technology with the goal of realising the world-wide potential to harness clean energy from land-based and offshore wind. The journal aims to reach all those with an interest in this field from academic research, industrial development through to applications, including individual wind turbines and components, wind farms and integration of wind power plants. Contributions across the spectrum of scientific and engineering disciplines concerned with the advancement of wind power capture, conversion, integration and utilisation technologies are essential features of the journal.