Humam B. Ghassib, Ahmad M. Alkurdi, Ayman S. Sandouqa
{"title":"两个133Cs原子在自由空间和超冷低密度133Cs蒸气中的散射和结合特性","authors":"Humam B. Ghassib, Ahmad M. Alkurdi, Ayman S. Sandouqa","doi":"10.1007/s10909-023-02987-x","DOIUrl":null,"url":null,"abstract":"<div><p>The scattering- and bound-state properties of two <sup>133</sup>Cs atoms, in free space as well as in low-dense Cs vapor, are calculated for both electronic singlet and triplet states. In free space, standard scattering theory is used; specifically, the Lippmann–Schwinger t-matrix equation is solved by a matrix-inversion technique. The output is the phase shifts, from which the corresponding (total, viscosity, [complex] spin-exchange, and average) cross sections are computed. In the vapor, a generalized scattering theory is invoked, the key equation being the Galitskii–Migdal–Feynman T-matrix equation. This is solved by the same technique to obtain the cross sections in the <i>medium</i>. Likewise, the t- and T-matrix equations are solved for negative definite energy eigenvalues—again, by matrix inversion, albeit after symmetrizing the kernel in the integral equation involved—to determine the respective binding energies of the Cs<sub>2</sub> dimer in free space and in the vapor. Sharp resonance peaks, representing ‘quasi’ bound states, appear in the cross sections. In the triplet total and viscosity cross sections, quantum effects appear as undulations. The results obtained for the complex spin-exchange cross sections are particularly highlighted, because of their importance in the spectroscopy of the <sup>133</sup>Cs<sub>2</sub> dimer. So are the results for the binding energy of this dimer, which are important in the physics of ultracold molecules. In calculating this quantity, as many relative partial waves as necessary (<i>ℓ</i> = 0–7 and 0–8 in free space and the medium, respectively) are taken into account to guarantee ‘convergence’. The role of the medium is given special attention throughout. Most of the quantities considered here are calculated for the first time; but whenever available, comparison is made with previous results.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"213 1-2","pages":"1 - 27"},"PeriodicalIF":1.1000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-023-02987-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Scattering- and Binding Properties of Two 133Cs Atoms in Free Space and in an Ultracold, Low-Dense 133Cs Vapor\",\"authors\":\"Humam B. Ghassib, Ahmad M. Alkurdi, Ayman S. Sandouqa\",\"doi\":\"10.1007/s10909-023-02987-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The scattering- and bound-state properties of two <sup>133</sup>Cs atoms, in free space as well as in low-dense Cs vapor, are calculated for both electronic singlet and triplet states. In free space, standard scattering theory is used; specifically, the Lippmann–Schwinger t-matrix equation is solved by a matrix-inversion technique. The output is the phase shifts, from which the corresponding (total, viscosity, [complex] spin-exchange, and average) cross sections are computed. In the vapor, a generalized scattering theory is invoked, the key equation being the Galitskii–Migdal–Feynman T-matrix equation. This is solved by the same technique to obtain the cross sections in the <i>medium</i>. Likewise, the t- and T-matrix equations are solved for negative definite energy eigenvalues—again, by matrix inversion, albeit after symmetrizing the kernel in the integral equation involved—to determine the respective binding energies of the Cs<sub>2</sub> dimer in free space and in the vapor. Sharp resonance peaks, representing ‘quasi’ bound states, appear in the cross sections. In the triplet total and viscosity cross sections, quantum effects appear as undulations. The results obtained for the complex spin-exchange cross sections are particularly highlighted, because of their importance in the spectroscopy of the <sup>133</sup>Cs<sub>2</sub> dimer. So are the results for the binding energy of this dimer, which are important in the physics of ultracold molecules. In calculating this quantity, as many relative partial waves as necessary (<i>ℓ</i> = 0–7 and 0–8 in free space and the medium, respectively) are taken into account to guarantee ‘convergence’. The role of the medium is given special attention throughout. Most of the quantities considered here are calculated for the first time; but whenever available, comparison is made with previous results.</p></div>\",\"PeriodicalId\":641,\"journal\":{\"name\":\"Journal of Low Temperature Physics\",\"volume\":\"213 1-2\",\"pages\":\"1 - 27\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10909-023-02987-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10909-023-02987-x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-023-02987-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Scattering- and Binding Properties of Two 133Cs Atoms in Free Space and in an Ultracold, Low-Dense 133Cs Vapor
The scattering- and bound-state properties of two 133Cs atoms, in free space as well as in low-dense Cs vapor, are calculated for both electronic singlet and triplet states. In free space, standard scattering theory is used; specifically, the Lippmann–Schwinger t-matrix equation is solved by a matrix-inversion technique. The output is the phase shifts, from which the corresponding (total, viscosity, [complex] spin-exchange, and average) cross sections are computed. In the vapor, a generalized scattering theory is invoked, the key equation being the Galitskii–Migdal–Feynman T-matrix equation. This is solved by the same technique to obtain the cross sections in the medium. Likewise, the t- and T-matrix equations are solved for negative definite energy eigenvalues—again, by matrix inversion, albeit after symmetrizing the kernel in the integral equation involved—to determine the respective binding energies of the Cs2 dimer in free space and in the vapor. Sharp resonance peaks, representing ‘quasi’ bound states, appear in the cross sections. In the triplet total and viscosity cross sections, quantum effects appear as undulations. The results obtained for the complex spin-exchange cross sections are particularly highlighted, because of their importance in the spectroscopy of the 133Cs2 dimer. So are the results for the binding energy of this dimer, which are important in the physics of ultracold molecules. In calculating this quantity, as many relative partial waves as necessary (ℓ = 0–7 and 0–8 in free space and the medium, respectively) are taken into account to guarantee ‘convergence’. The role of the medium is given special attention throughout. Most of the quantities considered here are calculated for the first time; but whenever available, comparison is made with previous results.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.