V. Taylor, T. Westerhold, S. Bohaty, J. Backman, T. Jones, K. Edgar, K. Egan, M. Lyle, H. Pälike, U. Röhl, J. Zachos, P. Wilson
{"title":"始新世—渐新世过渡时期方解石补偿深度的瞬态浅化、过深和沉降","authors":"V. Taylor, T. Westerhold, S. Bohaty, J. Backman, T. Jones, K. Edgar, K. Egan, M. Lyle, H. Pälike, U. Röhl, J. Zachos, P. Wilson","doi":"10.1029/2022PA004493","DOIUrl":null,"url":null,"abstract":"The major Cenozoic shift from a shallow (∼3–4 km) to deep (∼4.5 km) calcite compensation depth (CCD) occurred at the Eocene‐Oligocene Transition (∼34 Ma), suggesting a strong relationship between calcium carbonate (CaCO3) cycling and Antarctic glaciation. However, the linkages between these two events are debated. Here we present new records of bulk sediment stable isotope and carbonate composition from a depth transect of sites in the low‐latitude Pacific Ocean and one site from the South Atlantic Ocean, together with a new benthic foraminiferal stable isotope record (δ13Cb and δ18Ob) from the Pacific where the sedimentary sequence is most expanded. Our records reveal a short‐lived (∼3,000 Kyr) CCD shoaling event closely associated with a negative carbon isotope excursion in the latest Eocene. This event is immediately followed by CCD deepening which occurs in two rapid (∼40 Kyr‐long) steps. Our data show that the first of these deepening steps represents recovery from the latest Eocene shoaling event while the second was closely associated with a rapid increase in δ18Ob and shows a distinctive over‐deepening and settling pattern to >5 and 4.4 km, respectively. These results, together with good agreement between Pacific and South Atlantic records, strongly suggest that the carbon cycle was perturbed globally shortly before the inception of Antarctic glaciation. Once large‐scale Antarctic glaciation was initiated, rapid further change in global seawater chemistry triggered transitory deep ocean carbonate burial fluxes far exceeding their early Oligocene steady state values.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Transient Shoaling, Over‐Deepening and Settling of the Calcite Compensation Depth at the Eocene‐Oligocene Transition\",\"authors\":\"V. Taylor, T. Westerhold, S. Bohaty, J. Backman, T. Jones, K. Edgar, K. Egan, M. Lyle, H. Pälike, U. Röhl, J. Zachos, P. Wilson\",\"doi\":\"10.1029/2022PA004493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The major Cenozoic shift from a shallow (∼3–4 km) to deep (∼4.5 km) calcite compensation depth (CCD) occurred at the Eocene‐Oligocene Transition (∼34 Ma), suggesting a strong relationship between calcium carbonate (CaCO3) cycling and Antarctic glaciation. However, the linkages between these two events are debated. Here we present new records of bulk sediment stable isotope and carbonate composition from a depth transect of sites in the low‐latitude Pacific Ocean and one site from the South Atlantic Ocean, together with a new benthic foraminiferal stable isotope record (δ13Cb and δ18Ob) from the Pacific where the sedimentary sequence is most expanded. Our records reveal a short‐lived (∼3,000 Kyr) CCD shoaling event closely associated with a negative carbon isotope excursion in the latest Eocene. This event is immediately followed by CCD deepening which occurs in two rapid (∼40 Kyr‐long) steps. Our data show that the first of these deepening steps represents recovery from the latest Eocene shoaling event while the second was closely associated with a rapid increase in δ18Ob and shows a distinctive over‐deepening and settling pattern to >5 and 4.4 km, respectively. These results, together with good agreement between Pacific and South Atlantic records, strongly suggest that the carbon cycle was perturbed globally shortly before the inception of Antarctic glaciation. Once large‐scale Antarctic glaciation was initiated, rapid further change in global seawater chemistry triggered transitory deep ocean carbonate burial fluxes far exceeding their early Oligocene steady state values.\",\"PeriodicalId\":54239,\"journal\":{\"name\":\"Paleoceanography and Paleoclimatology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography and Paleoclimatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2022PA004493\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004493","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Transient Shoaling, Over‐Deepening and Settling of the Calcite Compensation Depth at the Eocene‐Oligocene Transition
The major Cenozoic shift from a shallow (∼3–4 km) to deep (∼4.5 km) calcite compensation depth (CCD) occurred at the Eocene‐Oligocene Transition (∼34 Ma), suggesting a strong relationship between calcium carbonate (CaCO3) cycling and Antarctic glaciation. However, the linkages between these two events are debated. Here we present new records of bulk sediment stable isotope and carbonate composition from a depth transect of sites in the low‐latitude Pacific Ocean and one site from the South Atlantic Ocean, together with a new benthic foraminiferal stable isotope record (δ13Cb and δ18Ob) from the Pacific where the sedimentary sequence is most expanded. Our records reveal a short‐lived (∼3,000 Kyr) CCD shoaling event closely associated with a negative carbon isotope excursion in the latest Eocene. This event is immediately followed by CCD deepening which occurs in two rapid (∼40 Kyr‐long) steps. Our data show that the first of these deepening steps represents recovery from the latest Eocene shoaling event while the second was closely associated with a rapid increase in δ18Ob and shows a distinctive over‐deepening and settling pattern to >5 and 4.4 km, respectively. These results, together with good agreement between Pacific and South Atlantic records, strongly suggest that the carbon cycle was perturbed globally shortly before the inception of Antarctic glaciation. Once large‐scale Antarctic glaciation was initiated, rapid further change in global seawater chemistry triggered transitory deep ocean carbonate burial fluxes far exceeding their early Oligocene steady state values.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.