{"title":"Ti和Ti+B细化铝晶粒的力学性能和磨损行为","authors":"Ahmad Mostafa","doi":"10.4018/IJSEIMS.2019010101","DOIUrl":null,"url":null,"abstract":"Grain refinement, by adding master alloys, is an important industrial process for aluminum casting operations. In this work, microstructure, microhardness, tensile properties, surface roughness and wear behavior of Al and both Al-0.15Ti and Al-0.05Ti-0.01B microalloys were investigated. The addition of Ti and B to pure Al reduced the grain size by 83%. The grain refinement effect was due to the presence of Al3Ti and TiB2 particles, which activated the columnar-to-equiaxed transition and improved both microhardness and tensile properties. The presence of both Al3Ti and TiB2 particles was confirmed using thermodynamic calculations. Average microhardness values increased form 39 HV for pure Al to 95 and 76 HV for Al-Ti and Al-Ti-B microalloys, respectively, by solid solution hardening. The enhanced wear behaviour of Al was due to the coarse-grained structure where the plastic deformation mechanism took place. Whereas, grain pull-out dominated the wear behavior of fine-grained specimens. It was concluded that the material with a smooth surface has high friction coefficient and low wear rate.","PeriodicalId":37123,"journal":{"name":"International Journal of Surface Engineering and Interdisciplinary Materials Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/IJSEIMS.2019010101","citationCount":"4","resultStr":"{\"title\":\"Mechanical Properties and Wear Behavior of Aluminum Grain Refined by Ti and Ti+B\",\"authors\":\"Ahmad Mostafa\",\"doi\":\"10.4018/IJSEIMS.2019010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grain refinement, by adding master alloys, is an important industrial process for aluminum casting operations. In this work, microstructure, microhardness, tensile properties, surface roughness and wear behavior of Al and both Al-0.15Ti and Al-0.05Ti-0.01B microalloys were investigated. The addition of Ti and B to pure Al reduced the grain size by 83%. The grain refinement effect was due to the presence of Al3Ti and TiB2 particles, which activated the columnar-to-equiaxed transition and improved both microhardness and tensile properties. The presence of both Al3Ti and TiB2 particles was confirmed using thermodynamic calculations. Average microhardness values increased form 39 HV for pure Al to 95 and 76 HV for Al-Ti and Al-Ti-B microalloys, respectively, by solid solution hardening. The enhanced wear behaviour of Al was due to the coarse-grained structure where the plastic deformation mechanism took place. Whereas, grain pull-out dominated the wear behavior of fine-grained specimens. It was concluded that the material with a smooth surface has high friction coefficient and low wear rate.\",\"PeriodicalId\":37123,\"journal\":{\"name\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4018/IJSEIMS.2019010101\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSEIMS.2019010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Engineering and Interdisciplinary Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSEIMS.2019010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4
摘要
通过添加中间合金来细化晶粒是铝铸件生产的重要工艺。研究了Al及Al-0.15 ti和Al-0.05 ti -0.01 b微合金的显微组织、显微硬度、拉伸性能、表面粗糙度和磨损性能。在纯Al中加入Ti和B使晶粒尺寸减小了83%。晶粒细化作用是由于Al3Ti和TiB2颗粒的存在,激活了柱状向等轴转变,提高了显微硬度和拉伸性能。利用热力学计算证实了Al3Ti和TiB2粒子的存在。固溶硬化后,Al- ti和Al- ti - b微合金的平均显微硬度分别从纯Al的39 HV提高到95和76 HV。铝的磨损性能增强是由于塑性变形机制发生的粗晶组织。细晶试样的磨损行为以晶粒拉出为主。表面光滑的材料具有较高的摩擦系数和较低的磨损率。
Mechanical Properties and Wear Behavior of Aluminum Grain Refined by Ti and Ti+B
Grain refinement, by adding master alloys, is an important industrial process for aluminum casting operations. In this work, microstructure, microhardness, tensile properties, surface roughness and wear behavior of Al and both Al-0.15Ti and Al-0.05Ti-0.01B microalloys were investigated. The addition of Ti and B to pure Al reduced the grain size by 83%. The grain refinement effect was due to the presence of Al3Ti and TiB2 particles, which activated the columnar-to-equiaxed transition and improved both microhardness and tensile properties. The presence of both Al3Ti and TiB2 particles was confirmed using thermodynamic calculations. Average microhardness values increased form 39 HV for pure Al to 95 and 76 HV for Al-Ti and Al-Ti-B microalloys, respectively, by solid solution hardening. The enhanced wear behaviour of Al was due to the coarse-grained structure where the plastic deformation mechanism took place. Whereas, grain pull-out dominated the wear behavior of fine-grained specimens. It was concluded that the material with a smooth surface has high friction coefficient and low wear rate.