3D打印ABS和TPU多材料蜂窝结构的能量吸收

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING 3D Printing and Additive Manufacturing Pub Date : 2024-04-01 Epub Date: 2024-04-16 DOI:10.1089/3dp.2022.0196
Nava Raj Khatri, Paul F Egan
{"title":"3D打印ABS和TPU多材料蜂窝结构的能量吸收","authors":"Nava Raj Khatri, Paul F Egan","doi":"10.1089/3dp.2022.0196","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in multimaterial 3D printing are enabling the construction of advantageous engineering structures that benefit from material synergies. Cellular structures, such as honeycombs, provide high-energy absorption to weight ratios that could benefit from multimaterial strategies to improve the safety and performance of engineered systems. In this study, we investigate the energy absorption for honeycombs with square and hexagonal unit cells constructed from acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU). Honeycombs were fabricated and tested for out-of-plane and in-plane compression using ABS, TPU, and a combination of ABS with a central TPU band of tunable height. Out-of-plane energy absorption for square honeycombs increased from 2.2 kN·mm for TPU samples to 11.5 kN·mm for ABS samples and energy absorption of hexagonal honeycombs increased from 2.9 to 15.1 kN·mm as proportions of TPU/ABS were altered. In-plane loading demonstrated a sequential collapse of unit cell rows in square honeycombs with energy absorption of 0.1 to 2.6 kN·mm and a gradual failure of hexagonal honeycombs with energy absorption of 0.6 to 2.0 kN·mm. These results demonstrate how multimaterial combinations affect honeycomb compressive response by highlighting their benefits for controlled energy absorption and deformation for tunable performance in diverse engineering applications.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057531/pdf/","citationCount":"0","resultStr":"{\"title\":\"Energy Absorption of 3D Printed ABS and TPU Multimaterial Honeycomb Structures.\",\"authors\":\"Nava Raj Khatri, Paul F Egan\",\"doi\":\"10.1089/3dp.2022.0196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in multimaterial 3D printing are enabling the construction of advantageous engineering structures that benefit from material synergies. Cellular structures, such as honeycombs, provide high-energy absorption to weight ratios that could benefit from multimaterial strategies to improve the safety and performance of engineered systems. In this study, we investigate the energy absorption for honeycombs with square and hexagonal unit cells constructed from acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU). Honeycombs were fabricated and tested for out-of-plane and in-plane compression using ABS, TPU, and a combination of ABS with a central TPU band of tunable height. Out-of-plane energy absorption for square honeycombs increased from 2.2 kN·mm for TPU samples to 11.5 kN·mm for ABS samples and energy absorption of hexagonal honeycombs increased from 2.9 to 15.1 kN·mm as proportions of TPU/ABS were altered. In-plane loading demonstrated a sequential collapse of unit cell rows in square honeycombs with energy absorption of 0.1 to 2.6 kN·mm and a gradual failure of hexagonal honeycombs with energy absorption of 0.6 to 2.0 kN·mm. These results demonstrate how multimaterial combinations affect honeycomb compressive response by highlighting their benefits for controlled energy absorption and deformation for tunable performance in diverse engineering applications.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057531/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0196\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0196","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

多材料三维打印技术的进步使人们能够建造得益于材料协同作用的优势工程结构。蜂窝等蜂窝结构具有高能量吸收重量比,可从多材料策略中获益,从而提高工程系统的安全性和性能。在本研究中,我们研究了由丙烯腈-丁二烯-苯乙烯(ABS)和热塑性聚氨酯(TPU)制成的具有方形和六边形单元格的蜂窝的能量吸收。使用丙烯腈-丁二烯-苯乙烯(ABS)、热塑性聚氨酯(TPU)和丙烯腈-丁二烯-苯乙烯(ABS)与可调高度的热塑性聚氨酯(TPU)中心带组合制作蜂窝,并对其进行平面外和平面内压缩测试。随着热塑性聚氨酯/热塑性弹性体比例的改变,正方形蜂窝的平面外能量吸收从热塑性聚氨酯样品的 2.2 千牛-毫米增加到热塑性弹性体样品的 11.5 千牛-毫米,六边形蜂窝的能量吸收从 2.9 千牛-毫米增加到 15.1 千牛-毫米。平面内加载表明,能量吸收为 0.1 至 2.6 千牛顿-毫米的方形蜂窝中的单胞排依次坍塌,能量吸收为 0.6 至 2.0 千牛顿-毫米的六角形蜂窝逐渐失效。这些结果表明了多材料组合如何影响蜂窝的压缩响应,突出了它们在控制能量吸收和变形方面的优势,从而在各种工程应用中实现可调性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy Absorption of 3D Printed ABS and TPU Multimaterial Honeycomb Structures.

Advances in multimaterial 3D printing are enabling the construction of advantageous engineering structures that benefit from material synergies. Cellular structures, such as honeycombs, provide high-energy absorption to weight ratios that could benefit from multimaterial strategies to improve the safety and performance of engineered systems. In this study, we investigate the energy absorption for honeycombs with square and hexagonal unit cells constructed from acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU). Honeycombs were fabricated and tested for out-of-plane and in-plane compression using ABS, TPU, and a combination of ABS with a central TPU band of tunable height. Out-of-plane energy absorption for square honeycombs increased from 2.2 kN·mm for TPU samples to 11.5 kN·mm for ABS samples and energy absorption of hexagonal honeycombs increased from 2.9 to 15.1 kN·mm as proportions of TPU/ABS were altered. In-plane loading demonstrated a sequential collapse of unit cell rows in square honeycombs with energy absorption of 0.1 to 2.6 kN·mm and a gradual failure of hexagonal honeycombs with energy absorption of 0.6 to 2.0 kN·mm. These results demonstrate how multimaterial combinations affect honeycomb compressive response by highlighting their benefits for controlled energy absorption and deformation for tunable performance in diverse engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
期刊最新文献
Additive Manufacturing of Stretchable Multi-Walled Carbon Nanotubes/Thermoplastic Polyurethanes Conducting Polymers for Strain Sensing. Large-Scale Hollow-Core 3D Printing: Variable Cross-Section and Printing Features for Lightweight Plastic Elements Printing of Cantilevers and Millifluidic Devices Using Ultrasound Waves Influence of Substrate Material and Sensor Geometry Variations on the Performance of Fused Deposition Modeling-Printed Strain Sensors Expert System for Online Defect Detection in Medical Devices Produced by Electron Beam Melting Using Layer-by-Layer Optical Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1