{"title":"基于深度神经网络的核设备管道系统在正常运行载荷下的状态监测","authors":"H. Sandhu, S. Bodda, Serena Sauers, Abhinav Gupta","doi":"10.1115/1.4062462","DOIUrl":null,"url":null,"abstract":"\n Various fields in engineering explore the applicability of deep learning within condition monitoring. With the resurgence of nuclear energy due to electricity and carbon-free power generation demand, ensuring safe operations at nuclear power plants is important. Nuclear safety systems can undergo vibrations due to operating loads such as pump operations, flow-induced, etc. Safety equipment-piping systems experience degradation over the course of time due to flow-accelerated erosion and corrosion. Undetected degradation at certain locations can be subjected to a buildup of cyclic fatigue due to operational vibrations and thermal cycles. A condition monitoring framework is required to avoid fatigue cracking and for early detection of degraded locations along with severity of degradation. This study aims to propose a condition monitoring methodology for nuclear equipment-piping subject to pump-induced vibrations during normal operations by designing a novel feature extraction technique, exploring parameters and developing a deep neural network, incorporating uncertainty in degradation severity, conducting a thorough investigation of predicted results to analyze erroneous predictions, and proposing strategic recommendations for “safe” pump operating speeds, as per ASME design criteria. Even with nondestructive testing, detection of fatigue in pipes continues to be a difficult problem. Thus, this novel strategic recommendation to the operator can be beneficial in avoiding fatigue in piping systems due to pump-induced vibrations. The effectiveness of the proposed framework is demonstrated on a Z-piping system connected to an auxiliary pump from Experimental Breeder Reactor II nuclear reactor and a high prediction accuracy is achieved.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Condition Monitoring of Nuclear Equipment-piping Systems Subjected to Normal Operating Loads Using Deep Neural Networks\",\"authors\":\"H. Sandhu, S. Bodda, Serena Sauers, Abhinav Gupta\",\"doi\":\"10.1115/1.4062462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Various fields in engineering explore the applicability of deep learning within condition monitoring. With the resurgence of nuclear energy due to electricity and carbon-free power generation demand, ensuring safe operations at nuclear power plants is important. Nuclear safety systems can undergo vibrations due to operating loads such as pump operations, flow-induced, etc. Safety equipment-piping systems experience degradation over the course of time due to flow-accelerated erosion and corrosion. Undetected degradation at certain locations can be subjected to a buildup of cyclic fatigue due to operational vibrations and thermal cycles. A condition monitoring framework is required to avoid fatigue cracking and for early detection of degraded locations along with severity of degradation. This study aims to propose a condition monitoring methodology for nuclear equipment-piping subject to pump-induced vibrations during normal operations by designing a novel feature extraction technique, exploring parameters and developing a deep neural network, incorporating uncertainty in degradation severity, conducting a thorough investigation of predicted results to analyze erroneous predictions, and proposing strategic recommendations for “safe” pump operating speeds, as per ASME design criteria. Even with nondestructive testing, detection of fatigue in pipes continues to be a difficult problem. Thus, this novel strategic recommendation to the operator can be beneficial in avoiding fatigue in piping systems due to pump-induced vibrations. The effectiveness of the proposed framework is demonstrated on a Z-piping system connected to an auxiliary pump from Experimental Breeder Reactor II nuclear reactor and a high prediction accuracy is achieved.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062462\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062462","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Condition Monitoring of Nuclear Equipment-piping Systems Subjected to Normal Operating Loads Using Deep Neural Networks
Various fields in engineering explore the applicability of deep learning within condition monitoring. With the resurgence of nuclear energy due to electricity and carbon-free power generation demand, ensuring safe operations at nuclear power plants is important. Nuclear safety systems can undergo vibrations due to operating loads such as pump operations, flow-induced, etc. Safety equipment-piping systems experience degradation over the course of time due to flow-accelerated erosion and corrosion. Undetected degradation at certain locations can be subjected to a buildup of cyclic fatigue due to operational vibrations and thermal cycles. A condition monitoring framework is required to avoid fatigue cracking and for early detection of degraded locations along with severity of degradation. This study aims to propose a condition monitoring methodology for nuclear equipment-piping subject to pump-induced vibrations during normal operations by designing a novel feature extraction technique, exploring parameters and developing a deep neural network, incorporating uncertainty in degradation severity, conducting a thorough investigation of predicted results to analyze erroneous predictions, and proposing strategic recommendations for “safe” pump operating speeds, as per ASME design criteria. Even with nondestructive testing, detection of fatigue in pipes continues to be a difficult problem. Thus, this novel strategic recommendation to the operator can be beneficial in avoiding fatigue in piping systems due to pump-induced vibrations. The effectiveness of the proposed framework is demonstrated on a Z-piping system connected to an auxiliary pump from Experimental Breeder Reactor II nuclear reactor and a high prediction accuracy is achieved.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.