扩展了一种通用的、快速的粗粒度分子动力学模型来研究接枝聚合物纳米复合材料的力学行为

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Forces in mechanics Pub Date : 2023-08-01 DOI:10.1016/j.finmec.2023.100207
Maximilian Ries, Sebastian Reber, Paul Steinmann, Sebastian Pfaller
{"title":"扩展了一种通用的、快速的粗粒度分子动力学模型来研究接枝聚合物纳米复合材料的力学行为","authors":"Maximilian Ries,&nbsp;Sebastian Reber,&nbsp;Paul Steinmann,&nbsp;Sebastian Pfaller","doi":"10.1016/j.finmec.2023.100207","DOIUrl":null,"url":null,"abstract":"<div><p>Polymer nanocomposites are an important class of materials for engineering applications due to their high versatility and good mechanical properties combined with low density. By directly attaching the polymer chains to the nanofillers, the so-called grafting, a better load transfer between matrix and filler is achieved, and, in addition, a better dispersion of the fillers is obtained. Both result in enhanced mechanical properties. Since experimental investigations on the nanoscale are extremely challenging, complementary numerical studies are needed to unravel the mechanical behavior of polymer nanocomposites. To this end, molecular dynamics is ideally suited since it captures the microstructure, but is also numerically expensive. Therefore, this contribution presents a fast coarse-grained molecular dynamics model for the investigation of the mechanical behavior of grafted polymer nanocomposites. For this purpose, we extend an existing model by grafting bonds, which allows us to compare the effect of untreated and grafted fillers directly. In particular, we investigate the influence of filler content, grafting degree, and filler size on the stiffness and strength of the polymer (grafted) nanocomposites. We conclude that the grafting bonds have little effect on the stiffness, while the strength is significantly improved compared to the untreated fillers, which is in agreement with the literature. The presented molecular dynamics model for polymer grafted nanocomposites provides the basis for further investigations, particularly of the crucial matrix-filler interphase. In addition, this contribution translates molecular dynamics insights into mechanical properties, which bridges the gap to the engineering scale and thus represents a step towards exploiting the full potential of polymer (grafted) nanocomposites.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending a generic and fast coarse-grained molecular dynamics model to examine the mechanical behavior of grafted polymer nanocomposites\",\"authors\":\"Maximilian Ries,&nbsp;Sebastian Reber,&nbsp;Paul Steinmann,&nbsp;Sebastian Pfaller\",\"doi\":\"10.1016/j.finmec.2023.100207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polymer nanocomposites are an important class of materials for engineering applications due to their high versatility and good mechanical properties combined with low density. By directly attaching the polymer chains to the nanofillers, the so-called grafting, a better load transfer between matrix and filler is achieved, and, in addition, a better dispersion of the fillers is obtained. Both result in enhanced mechanical properties. Since experimental investigations on the nanoscale are extremely challenging, complementary numerical studies are needed to unravel the mechanical behavior of polymer nanocomposites. To this end, molecular dynamics is ideally suited since it captures the microstructure, but is also numerically expensive. Therefore, this contribution presents a fast coarse-grained molecular dynamics model for the investigation of the mechanical behavior of grafted polymer nanocomposites. For this purpose, we extend an existing model by grafting bonds, which allows us to compare the effect of untreated and grafted fillers directly. In particular, we investigate the influence of filler content, grafting degree, and filler size on the stiffness and strength of the polymer (grafted) nanocomposites. We conclude that the grafting bonds have little effect on the stiffness, while the strength is significantly improved compared to the untreated fillers, which is in agreement with the literature. The presented molecular dynamics model for polymer grafted nanocomposites provides the basis for further investigations, particularly of the crucial matrix-filler interphase. In addition, this contribution translates molecular dynamics insights into mechanical properties, which bridges the gap to the engineering scale and thus represents a step towards exploiting the full potential of polymer (grafted) nanocomposites.</p></div>\",\"PeriodicalId\":93433,\"journal\":{\"name\":\"Forces in mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forces in mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666359723000422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚合物纳米复合材料具有通用性强、力学性能好、密度小等优点,是一类重要的工程材料。通过将聚合物链直接连接到纳米填料上,即所谓的接枝,可以实现基质和填料之间更好的负载传递,此外,还可以获得更好的填料分散性。两者都能增强机械性能。由于纳米尺度的实验研究极具挑战性,因此需要补充的数值研究来揭示聚合物纳米复合材料的力学行为。为此,分子动力学是非常合适的,因为它可以捕获微观结构,但在数值上也很昂贵。因此,这一贡献为接枝聚合物纳米复合材料力学行为的研究提供了一个快速的粗粒度分子动力学模型。为此,我们通过接枝键扩展了现有的模型,这使我们能够直接比较未处理和接枝填料的效果。我们特别研究了填料含量、接枝程度和填料尺寸对聚合物(接枝)纳米复合材料刚度和强度的影响。我们得出的结论是,与未经处理的填料相比,接枝键对刚度的影响很小,而强度明显提高,这与文献一致。所提出的聚合物接枝纳米复合材料的分子动力学模型为进一步研究提供了基础,特别是对关键的基质-填料界面的研究。此外,这一贡献将分子动力学的见解转化为机械性能,从而弥补了工程规模的差距,从而代表了开发聚合物(接枝)纳米复合材料的全部潜力的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extending a generic and fast coarse-grained molecular dynamics model to examine the mechanical behavior of grafted polymer nanocomposites

Polymer nanocomposites are an important class of materials for engineering applications due to their high versatility and good mechanical properties combined with low density. By directly attaching the polymer chains to the nanofillers, the so-called grafting, a better load transfer between matrix and filler is achieved, and, in addition, a better dispersion of the fillers is obtained. Both result in enhanced mechanical properties. Since experimental investigations on the nanoscale are extremely challenging, complementary numerical studies are needed to unravel the mechanical behavior of polymer nanocomposites. To this end, molecular dynamics is ideally suited since it captures the microstructure, but is also numerically expensive. Therefore, this contribution presents a fast coarse-grained molecular dynamics model for the investigation of the mechanical behavior of grafted polymer nanocomposites. For this purpose, we extend an existing model by grafting bonds, which allows us to compare the effect of untreated and grafted fillers directly. In particular, we investigate the influence of filler content, grafting degree, and filler size on the stiffness and strength of the polymer (grafted) nanocomposites. We conclude that the grafting bonds have little effect on the stiffness, while the strength is significantly improved compared to the untreated fillers, which is in agreement with the literature. The presented molecular dynamics model for polymer grafted nanocomposites provides the basis for further investigations, particularly of the crucial matrix-filler interphase. In addition, this contribution translates molecular dynamics insights into mechanical properties, which bridges the gap to the engineering scale and thus represents a step towards exploiting the full potential of polymer (grafted) nanocomposites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
期刊最新文献
Response of circular type sandwich panel using JUCO-glass fiber with PU foam under three-point bending loading An improved moment distribution method for the analysis of concrete frames Editorial Board Mass minimization approach for the optimal preliminary design of CMC inner liners in rocket thrust chambers Phase-field modelings of fracture investigate the influence of interfacial effects on damage and optimal material distribution in brittle inclusion-matrix structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1