基于笛卡尔积分核的椭球曲面引力势及其一阶和二阶偏导数

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Studia Geophysica et Geodaetica Pub Date : 2023-03-21 DOI:10.1007/s11200-022-0344-5
Shuai Wang, Zhaoxi Chen, Longjun Qiu
{"title":"基于笛卡尔积分核的椭球曲面引力势及其一阶和二阶偏导数","authors":"Shuai Wang,&nbsp;Zhaoxi Chen,&nbsp;Longjun Qiu","doi":"10.1007/s11200-022-0344-5","DOIUrl":null,"url":null,"abstract":"<div><p>Gravity forward modelling is a fundamental problem in the fields of geophysics and geodesy at regional and global scales. Considering the curvature of the Earth, tesseroids are suitable to accurately simulate the theoretical gravity field. In general, the spherical tesseroid is regarded as an ideal model, but it cannot consider the oblateness of the Earth. Therefore, we define an ellipsoidal tesseroid at the local Cartesian coordinate system. Then we propose the formulas of the gravitational potential and its first- and second-order partial derivatives of the ellipsoidal tesseroid based on the Cartesian integral kernel. To enhance the practicality, we approximate the ellipsoidal tesseroid to the spherical tesseroid and derive the formulas of the gravitational potential and its partial derivatives. Moreover, we discuss the formulas of the gravity field for the model with linear variable density. The ellipsoidal tesseroid, which is selected as the fundamental mass element, can more accurately simulate the gravity and gravity gradient anomalies of the Earth. Compared with methodologies that make use of integral kernels expressed in spherical coordinate system, the formulas based on the Cartesian integral kernel are given in compact and computationally attractive form. Besides, these formulas can avoid the polar singularity of the spherical coordinate system. The numerical simulation and comparison with previous methods validate the new ellipsoidal tesseriod formulas.</p></div>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"67 1-2","pages":"1 - 26"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11200-022-0344-5.pdf","citationCount":"0","resultStr":"{\"title\":\"The gravitational potential and its first- and second-order partial derivatives of an ellipsoidal tesseroid based on the Cartesian integral kernel\",\"authors\":\"Shuai Wang,&nbsp;Zhaoxi Chen,&nbsp;Longjun Qiu\",\"doi\":\"10.1007/s11200-022-0344-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gravity forward modelling is a fundamental problem in the fields of geophysics and geodesy at regional and global scales. Considering the curvature of the Earth, tesseroids are suitable to accurately simulate the theoretical gravity field. In general, the spherical tesseroid is regarded as an ideal model, but it cannot consider the oblateness of the Earth. Therefore, we define an ellipsoidal tesseroid at the local Cartesian coordinate system. Then we propose the formulas of the gravitational potential and its first- and second-order partial derivatives of the ellipsoidal tesseroid based on the Cartesian integral kernel. To enhance the practicality, we approximate the ellipsoidal tesseroid to the spherical tesseroid and derive the formulas of the gravitational potential and its partial derivatives. Moreover, we discuss the formulas of the gravity field for the model with linear variable density. The ellipsoidal tesseroid, which is selected as the fundamental mass element, can more accurately simulate the gravity and gravity gradient anomalies of the Earth. Compared with methodologies that make use of integral kernels expressed in spherical coordinate system, the formulas based on the Cartesian integral kernel are given in compact and computationally attractive form. Besides, these formulas can avoid the polar singularity of the spherical coordinate system. The numerical simulation and comparison with previous methods validate the new ellipsoidal tesseriod formulas.</p></div>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"67 1-2\",\"pages\":\"1 - 26\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11200-022-0344-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-022-0344-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-022-0344-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

重力正演模拟是区域和全球尺度地球物理和大地测量学领域的一个基本问题。考虑到地球的曲率,曲面适合于精确模拟理论重力场。一般来说,球形的曲面被认为是一个理想的模型,但它不能考虑地球的扁性。因此,我们在局部笛卡尔坐标系下定义了椭球曲面。在此基础上,提出了椭球曲面引力势及其一、二阶偏导数的计算公式。为了提高实用性,我们将椭球曲面近似为球面曲面,并推导了引力势及其偏导数的计算公式。此外,我们还讨论了线性变密度模型的重力场公式。选择椭球曲面作为基本质量元,可以较准确地模拟地球重力和重力梯度异常。与利用球坐标系中表示的积分核的方法相比,基于笛卡尔积分核的公式具有紧凑和计算吸引力。此外,这些公式还可以避免球坐标系的极奇异性。数值模拟和与以往方法的比较验证了新椭球体次周期公式的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The gravitational potential and its first- and second-order partial derivatives of an ellipsoidal tesseroid based on the Cartesian integral kernel

Gravity forward modelling is a fundamental problem in the fields of geophysics and geodesy at regional and global scales. Considering the curvature of the Earth, tesseroids are suitable to accurately simulate the theoretical gravity field. In general, the spherical tesseroid is regarded as an ideal model, but it cannot consider the oblateness of the Earth. Therefore, we define an ellipsoidal tesseroid at the local Cartesian coordinate system. Then we propose the formulas of the gravitational potential and its first- and second-order partial derivatives of the ellipsoidal tesseroid based on the Cartesian integral kernel. To enhance the practicality, we approximate the ellipsoidal tesseroid to the spherical tesseroid and derive the formulas of the gravitational potential and its partial derivatives. Moreover, we discuss the formulas of the gravity field for the model with linear variable density. The ellipsoidal tesseroid, which is selected as the fundamental mass element, can more accurately simulate the gravity and gravity gradient anomalies of the Earth. Compared with methodologies that make use of integral kernels expressed in spherical coordinate system, the formulas based on the Cartesian integral kernel are given in compact and computationally attractive form. Besides, these formulas can avoid the polar singularity of the spherical coordinate system. The numerical simulation and comparison with previous methods validate the new ellipsoidal tesseriod formulas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Geophysica et Geodaetica
Studia Geophysica et Geodaetica 地学-地球化学与地球物理
CiteScore
1.90
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.
期刊最新文献
Present-day crustal deformation based on an interpolated GPS velocity field in the collision zone of the Arabia-Eurasia tectonic plates Effect of the 2021 Cumbre Vieja eruption on precipitable water vapor and atmospheric particles analysed using GNSS and remote sensing Geophysical structure of a local area in the lunar Oceanus Procellarum region investigated using the gravity gradient method Estimation of the minimal detectable horizontal acceleration of GNSS CORS The area of rhumb polygons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1