中国环境退化与人口密度的比较再估计:来自Maki制度转换方法的证据

IF 0.2 4区 经济学 Q4 ECONOMICS Revista De Economia Mundial Pub Date : 2021-08-27 DOI:10.33776/REM.V0I58.4667
M. Hussain, N. Mahmood, Fuzhong Chen (corresponding author), Zeeshan Khan, Muhammad Usman
{"title":"中国环境退化与人口密度的比较再估计:来自Maki制度转换方法的证据","authors":"M. Hussain, N. Mahmood, Fuzhong Chen (corresponding author), Zeeshan Khan, Muhammad Usman","doi":"10.33776/REM.V0I58.4667","DOIUrl":null,"url":null,"abstract":"Numerous studies have estimated the linkage of economic growth and environmental degradation in the framework of EKC theory with typical CO 2 emissions proxy. However, the complexity of environmental degradation (ED) is better measured by ecological footprint (ECF) in any geographical territory. Against this background, the present study is an effort to contribute to the existing literature by re-investigating the EKC hypothesis with ecological footprint and CO 2 emissions proxy in the largest population of the world. Moreover, the role of population density is also considered with maximum data available from 1961 to 2016 for China. To estimate the said linkage, we apply first, second, and third-generation econometric approaches i. e. Augmented Dickey-Fuller unit root test, Zaviot Andrew’s unit root test with structural breaks, and Carrion-i-Silvestre’s general least-squares based test with several structural breaks. Likewise, the co-integration relationship is examined by applying Maki’s co-integration econometric approach with multiple structural breaks. Furthermore, the autoregressive distributive lag model is applied to investigate the long-run and short-run relationships by incorporating year dummies highlighted by MBk.  The results report the U-shaped EKC for China, which means economic growth is helping to clean the environment while the population density (PD) is found to be a cause of increasing ED. Findings have robust policy implications for China.","PeriodicalId":44512,"journal":{"name":"Revista De Economia Mundial","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparative re-estimation of environmental degradation and population density in China: Evidence from the Maki’s regime shift approach\",\"authors\":\"M. Hussain, N. Mahmood, Fuzhong Chen (corresponding author), Zeeshan Khan, Muhammad Usman\",\"doi\":\"10.33776/REM.V0I58.4667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous studies have estimated the linkage of economic growth and environmental degradation in the framework of EKC theory with typical CO 2 emissions proxy. However, the complexity of environmental degradation (ED) is better measured by ecological footprint (ECF) in any geographical territory. Against this background, the present study is an effort to contribute to the existing literature by re-investigating the EKC hypothesis with ecological footprint and CO 2 emissions proxy in the largest population of the world. Moreover, the role of population density is also considered with maximum data available from 1961 to 2016 for China. To estimate the said linkage, we apply first, second, and third-generation econometric approaches i. e. Augmented Dickey-Fuller unit root test, Zaviot Andrew’s unit root test with structural breaks, and Carrion-i-Silvestre’s general least-squares based test with several structural breaks. Likewise, the co-integration relationship is examined by applying Maki’s co-integration econometric approach with multiple structural breaks. Furthermore, the autoregressive distributive lag model is applied to investigate the long-run and short-run relationships by incorporating year dummies highlighted by MBk.  The results report the U-shaped EKC for China, which means economic growth is helping to clean the environment while the population density (PD) is found to be a cause of increasing ED. Findings have robust policy implications for China.\",\"PeriodicalId\":44512,\"journal\":{\"name\":\"Revista De Economia Mundial\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De Economia Mundial\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.33776/REM.V0I58.4667\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De Economia Mundial","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.33776/REM.V0I58.4667","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 7

摘要

许多研究已经在EKC理论的框架内用典型的CO2排放指标估计了经济增长和环境退化之间的联系。然而,环境退化(ED)的复杂性可以更好地通过任何地理区域的生态足迹(ECF)来衡量。在这种背景下,本研究试图通过在世界上最大的人口中重新调查生态足迹和二氧化碳排放指标的EKC假说,为现有文献做出贡献。此外,人口密度的作用也被考虑到了中国1961年至2016年的最大数据。为了估计上述联系,我们应用了第一代、第二代和第三代计量经济学方法,即增强Dickey-Fuller单位根检验、具有结构断裂的Zaviot-Andrew单位根检验和具有几个结构断裂的Carrion-i-Silvestre一般最小二乘基础检验。同样,通过应用Maki的具有多重结构断裂的协整计量经济学方法来检验协整关系。此外,将自回归分布滞后模型应用于研究长期和短期关系,方法是结合MBk强调的年份假人。研究结果报告了中国的U型EKC,这意味着经济增长有助于清洁环境,而人口密度(PD)是ED增加的原因。研究结果对中国具有强有力的政策意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative re-estimation of environmental degradation and population density in China: Evidence from the Maki’s regime shift approach
Numerous studies have estimated the linkage of economic growth and environmental degradation in the framework of EKC theory with typical CO 2 emissions proxy. However, the complexity of environmental degradation (ED) is better measured by ecological footprint (ECF) in any geographical territory. Against this background, the present study is an effort to contribute to the existing literature by re-investigating the EKC hypothesis with ecological footprint and CO 2 emissions proxy in the largest population of the world. Moreover, the role of population density is also considered with maximum data available from 1961 to 2016 for China. To estimate the said linkage, we apply first, second, and third-generation econometric approaches i. e. Augmented Dickey-Fuller unit root test, Zaviot Andrew’s unit root test with structural breaks, and Carrion-i-Silvestre’s general least-squares based test with several structural breaks. Likewise, the co-integration relationship is examined by applying Maki’s co-integration econometric approach with multiple structural breaks. Furthermore, the autoregressive distributive lag model is applied to investigate the long-run and short-run relationships by incorporating year dummies highlighted by MBk.  The results report the U-shaped EKC for China, which means economic growth is helping to clean the environment while the population density (PD) is found to be a cause of increasing ED. Findings have robust policy implications for China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
30
审稿时长
20 weeks
期刊介绍: a Revista de Economía Mundial (REM) ISSN: 1576-0162 es una publicación cuatrimestral editada por la Sociedad de Economía Mundial. Se trata de una Revista científica internacional que se encuentra reseñada en prestigiosos índices internacionales.
期刊最新文献
Capitalismo next generation: empresario y empresa en el mundo post COVID-19 How Did the 2008 Economic Crisis Affect Central Banks’ Research Topics? The Case of CEMLA Associates and Collaborating Members Editorial (español) Intra-country inequality and involvement in GVCs: the case of EU-28 The effects of Eastern-Western mobility in EU on the economic development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1