不确定条件下线性回归问题中矩阵参数的极大极小均方根估计

A. Nakonechnyi, G. Kudin, T. Zinko, Petr N. Zinko
{"title":"不确定条件下线性回归问题中矩阵参数的极大极小均方根估计","authors":"A. Nakonechnyi, G. Kudin, T. Zinko, Petr N. Zinko","doi":"10.34229/1028-0979-2021-4-3","DOIUrl":null,"url":null,"abstract":"The issues of parameter estimation in linear regression problems with random matrix coefficients were researched. Given that random linear functions are observed from unknown matrices with random errors that have unknown correlation matrices, the problems of guaranteed mean square estimation of linear functions of matrices were investigated. The estimates of the upper and lower guaranteed standard errors of linear estimates of observations of linear functions of matrices were obtained in the case when the sets are found, for which the unknown matrices and correlation matrices of observation errors are known. It was proved that for some partial cases such estimates are accurate. Assuming that the sets are bounded, convex and closed, more accurate two-sided estimates have been gained for guaranteed errors. The conditions when the guaranteed mean squared errors approach zero as the number of observations increases were found. The necessary and sufficient conditions for the unbiasedness of linear estimates of linear functions of matrices were provided. The notion of quasi-optimal estimates for linear functions of matrices was introduced, and it was proved that in the class of unbiased estimates, quasi-optimal estimates exist and are unique. For such estimates, the conditions of convergence to zero of the guaranteed mean-square errors were obtained. Also, for linear estimates of unknown matrices, the concept of quasi-minimax estimates was introduced and it was confirmed that they are unbiased. For special sets, which include an unknown matrix and correlation matrices of observation errors, such estimates were expressed through the solution of linear operator equations in a finite-dimensional space. For quasi-minimax estimates under certain assumptions, the form of the guaranteed mean squared error of the unknown matrix was found. It was shown that such errors are limited by the sum of traces of the known matrices. An example of finding a minimax unbiased linear estimation was given for a special type of random matrices that are included in the observation equation.","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MINIMAX ROOT–MEAN–SQUARE ESTIMATES OF MATRIX PARAMETERS IN LINEAR REGRESSION PROBLEMS UNDER UNCERTAINTY\",\"authors\":\"A. Nakonechnyi, G. Kudin, T. Zinko, Petr N. Zinko\",\"doi\":\"10.34229/1028-0979-2021-4-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The issues of parameter estimation in linear regression problems with random matrix coefficients were researched. Given that random linear functions are observed from unknown matrices with random errors that have unknown correlation matrices, the problems of guaranteed mean square estimation of linear functions of matrices were investigated. The estimates of the upper and lower guaranteed standard errors of linear estimates of observations of linear functions of matrices were obtained in the case when the sets are found, for which the unknown matrices and correlation matrices of observation errors are known. It was proved that for some partial cases such estimates are accurate. Assuming that the sets are bounded, convex and closed, more accurate two-sided estimates have been gained for guaranteed errors. The conditions when the guaranteed mean squared errors approach zero as the number of observations increases were found. The necessary and sufficient conditions for the unbiasedness of linear estimates of linear functions of matrices were provided. The notion of quasi-optimal estimates for linear functions of matrices was introduced, and it was proved that in the class of unbiased estimates, quasi-optimal estimates exist and are unique. For such estimates, the conditions of convergence to zero of the guaranteed mean-square errors were obtained. Also, for linear estimates of unknown matrices, the concept of quasi-minimax estimates was introduced and it was confirmed that they are unbiased. For special sets, which include an unknown matrix and correlation matrices of observation errors, such estimates were expressed through the solution of linear operator equations in a finite-dimensional space. For quasi-minimax estimates under certain assumptions, the form of the guaranteed mean squared error of the unknown matrix was found. It was shown that such errors are limited by the sum of traces of the known matrices. An example of finding a minimax unbiased linear estimation was given for a special type of random matrices that are included in the observation equation.\",\"PeriodicalId\":54874,\"journal\":{\"name\":\"Journal of Automation and Information Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34229/1028-0979-2021-4-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/1028-0979-2021-4-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

研究了随机矩阵系数线性回归问题中的参数估计问题。考虑到随机线性函数是从具有未知相关矩阵的具有随机误差的未知矩阵中观察到的,研究了矩阵线性函数的保均方估计问题。在已知观测误差的未知矩阵和相关矩阵的集合的情况下,得到了矩阵线性函数观测值的线性估计的上下保证标准误差的估计。事实证明,对于某些局部情况,这种估计是准确的。假设集合是有界的、凸的和闭合的,对于保证误差,已经获得了更精确的双侧估计。发现了保证均方误差随着观测次数的增加而接近零的条件。给出了矩阵线性函数线性估计无偏的充要条件。引入了矩阵线性函数的拟最优估计的概念,证明了在无偏估计类中,拟最优估计是存在的并且是唯一的。对于这样的估计,得到了保证均方误差收敛到零的条件。此外,对于未知矩阵的线性估计,引入了拟极大极小估计的概念,并证实了它们是无偏的。对于包括未知矩阵和观测误差相关矩阵的特殊集合,这种估计是通过有限维空间中线性算子方程的解来表示的。对于某些假设下的拟极大极小估计,给出了未知矩阵的保证均方误差的形式。结果表明,这种误差受到已知矩阵迹和的限制。给出了观测方程中包含的一类特殊随机矩阵的极大极小无偏线性估计的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MINIMAX ROOT–MEAN–SQUARE ESTIMATES OF MATRIX PARAMETERS IN LINEAR REGRESSION PROBLEMS UNDER UNCERTAINTY
The issues of parameter estimation in linear regression problems with random matrix coefficients were researched. Given that random linear functions are observed from unknown matrices with random errors that have unknown correlation matrices, the problems of guaranteed mean square estimation of linear functions of matrices were investigated. The estimates of the upper and lower guaranteed standard errors of linear estimates of observations of linear functions of matrices were obtained in the case when the sets are found, for which the unknown matrices and correlation matrices of observation errors are known. It was proved that for some partial cases such estimates are accurate. Assuming that the sets are bounded, convex and closed, more accurate two-sided estimates have been gained for guaranteed errors. The conditions when the guaranteed mean squared errors approach zero as the number of observations increases were found. The necessary and sufficient conditions for the unbiasedness of linear estimates of linear functions of matrices were provided. The notion of quasi-optimal estimates for linear functions of matrices was introduced, and it was proved that in the class of unbiased estimates, quasi-optimal estimates exist and are unique. For such estimates, the conditions of convergence to zero of the guaranteed mean-square errors were obtained. Also, for linear estimates of unknown matrices, the concept of quasi-minimax estimates was introduced and it was confirmed that they are unbiased. For special sets, which include an unknown matrix and correlation matrices of observation errors, such estimates were expressed through the solution of linear operator equations in a finite-dimensional space. For quasi-minimax estimates under certain assumptions, the form of the guaranteed mean squared error of the unknown matrix was found. It was shown that such errors are limited by the sum of traces of the known matrices. An example of finding a minimax unbiased linear estimation was given for a special type of random matrices that are included in the observation equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Automation and Information Sciences
Journal of Automation and Information Sciences AUTOMATION & CONTROL SYSTEMS-
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.
期刊最新文献
Validity and Reliability Study of Turkish Version of Clinical Assessment Interview for Negative Symptoms (CAINS). OPTIMIZATION OF THE TRAJECTORY OF SENSORS MOTION TAKING INTO ACCOUNT THE IMPORTANCE OF THE AREAS OF THE MONITORING AREA SEGMENTS AND THE PROBABILITY OF DETECTION OF OBJECTS ALGORITHMIC AND HARDWARE TOOLS FOR MOVING TARGETS DETECTION ON THE PROJECTION SCREEN FROM THE LASER EMITTER OF THE MULTIMEDIA TRAINER ON DEGENARATE CASE OF THREE-DIMENTIONAL PROBLEM OF THICK ELASTIC PLATESʼ DYNAMICS VALIDATION OF LAND DEGRADATION CARDS ON THE BASIS OF GEOSPATIAL DATA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1