{"title":"VOSA:用于保护隐私的联合学习的可验证和不可忽略的安全聚合","authors":"Yong Wang, Aiqing Zhang, Shu-Lin Wu, Shui Yu","doi":"10.1109/TDSC.2022.3226508","DOIUrl":null,"url":null,"abstract":"Federated learning has emerged as a promising paradigm by collaboratively training a global model through sharing local gradients without exposing raw data. However, the shared gradients pose a threat to privacy leakage of local data. The central server may forge the aggregated results. Besides, it is common that resource-constrained devices drop out in federated learning. To solve these problems, the existing solutions consider either only efficiency, or privacy preservation. It is still a challenge to design a verifiable and lightweight secure aggregation with drop-out resilience for large-scale federated learning. In this article, we propose VOSA, an efficient verifiable and oblivious secure aggregation protocol for privacy-preserving federated learning. We exploit aggregator oblivious encryption to efficiently mask users’ local gradients. The central server performs aggregation on the obscured gradients without revealing the privacy of local data. Meanwhile, each user can efficiently verify the correctness of the aggregated results. Moreover, VOSA adopts a dynamic group management mechanism to tolerate users’ dropping out with no impact on their participation in future learning process. Security analysis shows that the VOSA can guarantee the security requirements of privacy-preserving federated learning. The extensive experimental evaluations conducted on real-world datasets demonstrate the practical performance of the proposed VOSA with high efficiency.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"3601-3616"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"VOSA: Verifiable and Oblivious Secure Aggregation for Privacy-Preserving Federated Learning\",\"authors\":\"Yong Wang, Aiqing Zhang, Shu-Lin Wu, Shui Yu\",\"doi\":\"10.1109/TDSC.2022.3226508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning has emerged as a promising paradigm by collaboratively training a global model through sharing local gradients without exposing raw data. However, the shared gradients pose a threat to privacy leakage of local data. The central server may forge the aggregated results. Besides, it is common that resource-constrained devices drop out in federated learning. To solve these problems, the existing solutions consider either only efficiency, or privacy preservation. It is still a challenge to design a verifiable and lightweight secure aggregation with drop-out resilience for large-scale federated learning. In this article, we propose VOSA, an efficient verifiable and oblivious secure aggregation protocol for privacy-preserving federated learning. We exploit aggregator oblivious encryption to efficiently mask users’ local gradients. The central server performs aggregation on the obscured gradients without revealing the privacy of local data. Meanwhile, each user can efficiently verify the correctness of the aggregated results. Moreover, VOSA adopts a dynamic group management mechanism to tolerate users’ dropping out with no impact on their participation in future learning process. Security analysis shows that the VOSA can guarantee the security requirements of privacy-preserving federated learning. The extensive experimental evaluations conducted on real-world datasets demonstrate the practical performance of the proposed VOSA with high efficiency.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"20 1\",\"pages\":\"3601-3616\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2022.3226508\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3226508","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
VOSA: Verifiable and Oblivious Secure Aggregation for Privacy-Preserving Federated Learning
Federated learning has emerged as a promising paradigm by collaboratively training a global model through sharing local gradients without exposing raw data. However, the shared gradients pose a threat to privacy leakage of local data. The central server may forge the aggregated results. Besides, it is common that resource-constrained devices drop out in federated learning. To solve these problems, the existing solutions consider either only efficiency, or privacy preservation. It is still a challenge to design a verifiable and lightweight secure aggregation with drop-out resilience for large-scale federated learning. In this article, we propose VOSA, an efficient verifiable and oblivious secure aggregation protocol for privacy-preserving federated learning. We exploit aggregator oblivious encryption to efficiently mask users’ local gradients. The central server performs aggregation on the obscured gradients without revealing the privacy of local data. Meanwhile, each user can efficiently verify the correctness of the aggregated results. Moreover, VOSA adopts a dynamic group management mechanism to tolerate users’ dropping out with no impact on their participation in future learning process. Security analysis shows that the VOSA can guarantee the security requirements of privacy-preserving federated learning. The extensive experimental evaluations conducted on real-world datasets demonstrate the practical performance of the proposed VOSA with high efficiency.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.