Y. Orozco, A. Betancur, E. Chavarriaga, J. G. Ramirez, R. Moreno, J. Palacio, S. Leal-Marin, B. Glasmacher, O. Gryshkov, C. Paucar, C. Garcia, A. Lopera
{"title":"NaCl对凝胶燃烧合成的MgFe2O4纳米颗粒磁性能的影响","authors":"Y. Orozco, A. Betancur, E. Chavarriaga, J. G. Ramirez, R. Moreno, J. Palacio, S. Leal-Marin, B. Glasmacher, O. Gryshkov, C. Paucar, C. Garcia, A. Lopera","doi":"10.3103/S106138622302005X","DOIUrl":null,"url":null,"abstract":"<p>The effect of sodium chloride (NaCl) on the magnetism of nanopowders of the spinel ferrite (MgFe<sub>2</sub>O<sub>4</sub>) produced using a salt-assisted solution combustion synthesis was investigated. X-ray diffraction (XRD) analysis was conducted to evaluate crystalline structure and phase composition of the synthesized materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was used to evaluate the particle size and morphology. Magnetic behavior was analyzed by measuring and analyzing the respective hysteresis loops using a vibrating sample magnetometer (VSM). The characterization showed that the presence of NaCl affects the phase composition, size, and dispersion of the nanoparticles, as well as their magnetic behavior. The theoretical size of the nanoparticles was calculated using the Scherrer equation, obtaining sizes of about 21.07 nm for the nanoparticles without salt, 5.90 nm for the sample salt content of 1.7 mol and 6.48 nm—for 3.4 mol. The synthesized nanoparticles showed a drastic decrease in coercivity field, remanence, and saturation with increasing salt content. Therefore, the salt content is a crucial parameter in controlling the morphology and magnetic properties of the nanoparticles obtained by the solution combustion route.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 2","pages":"139 - 149"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of NaCl on Magnetic Properties of MgFe2O4 Nanoparticles Synthesized by Gel Combustion\",\"authors\":\"Y. Orozco, A. Betancur, E. Chavarriaga, J. G. Ramirez, R. Moreno, J. Palacio, S. Leal-Marin, B. Glasmacher, O. Gryshkov, C. Paucar, C. Garcia, A. Lopera\",\"doi\":\"10.3103/S106138622302005X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of sodium chloride (NaCl) on the magnetism of nanopowders of the spinel ferrite (MgFe<sub>2</sub>O<sub>4</sub>) produced using a salt-assisted solution combustion synthesis was investigated. X-ray diffraction (XRD) analysis was conducted to evaluate crystalline structure and phase composition of the synthesized materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was used to evaluate the particle size and morphology. Magnetic behavior was analyzed by measuring and analyzing the respective hysteresis loops using a vibrating sample magnetometer (VSM). The characterization showed that the presence of NaCl affects the phase composition, size, and dispersion of the nanoparticles, as well as their magnetic behavior. The theoretical size of the nanoparticles was calculated using the Scherrer equation, obtaining sizes of about 21.07 nm for the nanoparticles without salt, 5.90 nm for the sample salt content of 1.7 mol and 6.48 nm—for 3.4 mol. The synthesized nanoparticles showed a drastic decrease in coercivity field, remanence, and saturation with increasing salt content. Therefore, the salt content is a crucial parameter in controlling the morphology and magnetic properties of the nanoparticles obtained by the solution combustion route.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"32 2\",\"pages\":\"139 - 149\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S106138622302005X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S106138622302005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of NaCl on Magnetic Properties of MgFe2O4 Nanoparticles Synthesized by Gel Combustion
The effect of sodium chloride (NaCl) on the magnetism of nanopowders of the spinel ferrite (MgFe2O4) produced using a salt-assisted solution combustion synthesis was investigated. X-ray diffraction (XRD) analysis was conducted to evaluate crystalline structure and phase composition of the synthesized materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was used to evaluate the particle size and morphology. Magnetic behavior was analyzed by measuring and analyzing the respective hysteresis loops using a vibrating sample magnetometer (VSM). The characterization showed that the presence of NaCl affects the phase composition, size, and dispersion of the nanoparticles, as well as their magnetic behavior. The theoretical size of the nanoparticles was calculated using the Scherrer equation, obtaining sizes of about 21.07 nm for the nanoparticles without salt, 5.90 nm for the sample salt content of 1.7 mol and 6.48 nm—for 3.4 mol. The synthesized nanoparticles showed a drastic decrease in coercivity field, remanence, and saturation with increasing salt content. Therefore, the salt content is a crucial parameter in controlling the morphology and magnetic properties of the nanoparticles obtained by the solution combustion route.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.