{"title":"使用嵌入式XoR电路的时钟门控触发器","authors":"P. Zhao, W. Cortes, Congyi Zhu, Tom Springer","doi":"10.5121/csit.2021.110809","DOIUrl":null,"url":null,"abstract":"Flip flops/Pulsed latches are one of the main contributors of dynamic power consumption. In this paper, a novel flip-flop (FF) using clock gating circuitry with embedded XOR, GEMFF, is proposed. Using post layout simulation with 45nm technology, GEMFF outperforms prior stateof-the-art flip-flop by 25.1% at 10% data switching activity in terms of power consumption.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clock Gating Flip-Flop using Embedded XoR Circuitry\",\"authors\":\"P. Zhao, W. Cortes, Congyi Zhu, Tom Springer\",\"doi\":\"10.5121/csit.2021.110809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flip flops/Pulsed latches are one of the main contributors of dynamic power consumption. In this paper, a novel flip-flop (FF) using clock gating circuitry with embedded XOR, GEMFF, is proposed. Using post layout simulation with 45nm technology, GEMFF outperforms prior stateof-the-art flip-flop by 25.1% at 10% data switching activity in terms of power consumption.\",\"PeriodicalId\":72673,\"journal\":{\"name\":\"Computer science & information technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer science & information technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2021.110809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2021.110809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clock Gating Flip-Flop using Embedded XoR Circuitry
Flip flops/Pulsed latches are one of the main contributors of dynamic power consumption. In this paper, a novel flip-flop (FF) using clock gating circuitry with embedded XOR, GEMFF, is proposed. Using post layout simulation with 45nm technology, GEMFF outperforms prior stateof-the-art flip-flop by 25.1% at 10% data switching activity in terms of power consumption.