Yin He, Dehong Tan, B. Bai, Zhaoxia Wu, Shu-juan Ji
{"title":"表没食子儿茶素-3-没食子酸酯减轻丙烯酰胺诱导的大鼠大脑皮层细胞凋亡和星形胶质细胞形成","authors":"Yin He, Dehong Tan, B. Bai, Zhaoxia Wu, Shu-juan Ji","doi":"10.1080/15376516.2017.1279251","DOIUrl":null,"url":null,"abstract":"Abstract The potent neurotoxic agent acrylamide (ACR) is formed during Maillard reaction in food processing. Epigallocatechin-3-gallate (EGCG), a major bioactive component of green tea, is an antioxidant, but its effects on ACR-induced neurotoxicity are unclear. Here, we investigated the neuroprotective effects of EGCG against ACR-induced apoptosis and astrogliosis in the cerebral cortex. Rats were pretreated with EGCG for 4 d and then co-administered ACR for 14 d. Immunohistochemical analysis of glial fibrillary acidic protein and 8-hydroxy-2′-deoxyguanosine indicated that EGCG attenuated astrogliosis and DNA damage in ACR-treated rats. Analysis of DNA fragmentation and protein expression of Bax, Bcl-2, caspase 3, and cytochrome c revealed that EGCG inhibited ACR-induced apoptosis. Furthermore, EGCG inhibited oxidative stress by enhancing the activity of antioxidant enzymes and glutathione levels and reducing the formation of reactive oxygen species and lipid peroxidation. Taken together, our data demonstrate that EGCG inhibits ACR-induced apoptosis and astrogliosis in the cerebral cortex.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"27 1","pages":"298 - 306"},"PeriodicalIF":2.8000,"publicationDate":"2017-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15376516.2017.1279251","citationCount":"34","resultStr":"{\"title\":\"Epigallocatechin-3-gallate attenuates acrylamide-induced apoptosis and astrogliosis in rat cerebral cortex\",\"authors\":\"Yin He, Dehong Tan, B. Bai, Zhaoxia Wu, Shu-juan Ji\",\"doi\":\"10.1080/15376516.2017.1279251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The potent neurotoxic agent acrylamide (ACR) is formed during Maillard reaction in food processing. Epigallocatechin-3-gallate (EGCG), a major bioactive component of green tea, is an antioxidant, but its effects on ACR-induced neurotoxicity are unclear. Here, we investigated the neuroprotective effects of EGCG against ACR-induced apoptosis and astrogliosis in the cerebral cortex. Rats were pretreated with EGCG for 4 d and then co-administered ACR for 14 d. Immunohistochemical analysis of glial fibrillary acidic protein and 8-hydroxy-2′-deoxyguanosine indicated that EGCG attenuated astrogliosis and DNA damage in ACR-treated rats. Analysis of DNA fragmentation and protein expression of Bax, Bcl-2, caspase 3, and cytochrome c revealed that EGCG inhibited ACR-induced apoptosis. Furthermore, EGCG inhibited oxidative stress by enhancing the activity of antioxidant enzymes and glutathione levels and reducing the formation of reactive oxygen species and lipid peroxidation. Taken together, our data demonstrate that EGCG inhibits ACR-induced apoptosis and astrogliosis in the cerebral cortex.\",\"PeriodicalId\":49117,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\"27 1\",\"pages\":\"298 - 306\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2017-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15376516.2017.1279251\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2017.1279251\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2017.1279251","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Epigallocatechin-3-gallate attenuates acrylamide-induced apoptosis and astrogliosis in rat cerebral cortex
Abstract The potent neurotoxic agent acrylamide (ACR) is formed during Maillard reaction in food processing. Epigallocatechin-3-gallate (EGCG), a major bioactive component of green tea, is an antioxidant, but its effects on ACR-induced neurotoxicity are unclear. Here, we investigated the neuroprotective effects of EGCG against ACR-induced apoptosis and astrogliosis in the cerebral cortex. Rats were pretreated with EGCG for 4 d and then co-administered ACR for 14 d. Immunohistochemical analysis of glial fibrillary acidic protein and 8-hydroxy-2′-deoxyguanosine indicated that EGCG attenuated astrogliosis and DNA damage in ACR-treated rats. Analysis of DNA fragmentation and protein expression of Bax, Bcl-2, caspase 3, and cytochrome c revealed that EGCG inhibited ACR-induced apoptosis. Furthermore, EGCG inhibited oxidative stress by enhancing the activity of antioxidant enzymes and glutathione levels and reducing the formation of reactive oxygen species and lipid peroxidation. Taken together, our data demonstrate that EGCG inhibits ACR-induced apoptosis and astrogliosis in the cerebral cortex.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.