Qiang Zhang , Zudi Lu , Shancun Liu , Haijun Yang , Jingrui Pan
{"title":"高频交易过程的交易级分析的MA-MRR模型","authors":"Qiang Zhang , Zudi Lu , Shancun Liu , Haijun Yang , Jingrui Pan","doi":"10.1016/j.jmse.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The transaction-level analysis of security price changes by Madhavan, Richardson, and Roomans (1997, hereafter MRR) is a useful framework for financial analysis. The first-order Markov property of trading indicator variables is a critical assumption in the MRR model, which contradicts the information lag empirically demonstrated in high-frequency trading processes. In this study, a nonparametric test is employed, which shows that the Markov property of the trading indicator variables is rejected on most trading days. Based on the spread decomposed structure, an MA-MRR model was proposed with a moving average structure adopted to absorb the information lag as an extension. The empirical results show that the information lag plays an important role in measuring the adverse selection risk parameter and that the difference in this parameter between the original and the extension is significant. Furthermore, our analysis suggests that the information lag parameter is a useful measure of the average speed at which information is incorporated into prices.</p></div>","PeriodicalId":36172,"journal":{"name":"Journal of Management Science and Engineering","volume":"9 1","pages":"Pages 53-61"},"PeriodicalIF":5.4000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096232023000483/pdfft?md5=5c5443e7ff5cea6fd09a4249e9a0db69&pid=1-s2.0-S2096232023000483-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An MA-MRR model for transaction-level analysis of high-frequency trading processes\",\"authors\":\"Qiang Zhang , Zudi Lu , Shancun Liu , Haijun Yang , Jingrui Pan\",\"doi\":\"10.1016/j.jmse.2023.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The transaction-level analysis of security price changes by Madhavan, Richardson, and Roomans (1997, hereafter MRR) is a useful framework for financial analysis. The first-order Markov property of trading indicator variables is a critical assumption in the MRR model, which contradicts the information lag empirically demonstrated in high-frequency trading processes. In this study, a nonparametric test is employed, which shows that the Markov property of the trading indicator variables is rejected on most trading days. Based on the spread decomposed structure, an MA-MRR model was proposed with a moving average structure adopted to absorb the information lag as an extension. The empirical results show that the information lag plays an important role in measuring the adverse selection risk parameter and that the difference in this parameter between the original and the extension is significant. Furthermore, our analysis suggests that the information lag parameter is a useful measure of the average speed at which information is incorporated into prices.</p></div>\",\"PeriodicalId\":36172,\"journal\":{\"name\":\"Journal of Management Science and Engineering\",\"volume\":\"9 1\",\"pages\":\"Pages 53-61\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096232023000483/pdfft?md5=5c5443e7ff5cea6fd09a4249e9a0db69&pid=1-s2.0-S2096232023000483-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Management Science and Engineering\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096232023000483\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Management Science and Engineering","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096232023000483","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
An MA-MRR model for transaction-level analysis of high-frequency trading processes
The transaction-level analysis of security price changes by Madhavan, Richardson, and Roomans (1997, hereafter MRR) is a useful framework for financial analysis. The first-order Markov property of trading indicator variables is a critical assumption in the MRR model, which contradicts the information lag empirically demonstrated in high-frequency trading processes. In this study, a nonparametric test is employed, which shows that the Markov property of the trading indicator variables is rejected on most trading days. Based on the spread decomposed structure, an MA-MRR model was proposed with a moving average structure adopted to absorb the information lag as an extension. The empirical results show that the information lag plays an important role in measuring the adverse selection risk parameter and that the difference in this parameter between the original and the extension is significant. Furthermore, our analysis suggests that the information lag parameter is a useful measure of the average speed at which information is incorporated into prices.
期刊介绍:
The Journal of Engineering and Applied Science (JEAS) is the official journal of the Faculty of Engineering, Cairo University (CUFE), Egypt, established in 1816.
The Journal of Engineering and Applied Science publishes fundamental and applied research articles and reviews spanning different areas of engineering disciplines, applications, and interdisciplinary topics.