{"title":"基于混合DE/PSO算法的自势数据反演","authors":"Sanam Hosseinzadeh, Gökhan Göktürkler, Seçil Turan-Karaoğlan","doi":"10.1007/s40328-023-00414-x","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this work is to investigate whether retrieving the model parameters of self-potential (SP) anomalies using a combination of differential evolution (DE) and particle swarm optimization (PSO) is possible. This approach hybridizes DE and PSO in a parallel way. Each algorithm is self-contained and obtains a [premature] solution after a user-defined generation number. This hybrid algorithm (DE/PSO) selects the best individual in DE and PSO populations and carries it to the next iteration. Cooperation of DE and PSO can significantly improve the results. Simulations through noise-free synthetic anomalies show that the DE/PSO hybrid algorithm is successful in providing more accurate solutions than those obtained using each single metaheuristic. The algorithm also speeds up the rate of convergence to get the optimum solution. We implemented the algorithm in R programming environment using available metaheuristics packages. Then, the reliability of the code was investigated using some mathematical test functions having two and higher dimensions (unknowns). The performance of the hybrid to invert SP anomalies was tested by synthetic and field data sets. The true model parameters were well-recovered from synthetic data sets including noise-free and noisy data. In the tests with field data, SP anomalies over a shallow ore deposit in Süleymanköy (Türkiye), a deep ore deposit in Arizona (USA), and multiple sources of graphite deposits in KTB borehole site (Germany) were inverted. Low misfit values between the observed and calculated SP anomalies were obtained during the test studies.</p></div>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inversion of self-potential data by a hybrid DE/PSO algorithm\",\"authors\":\"Sanam Hosseinzadeh, Gökhan Göktürkler, Seçil Turan-Karaoğlan\",\"doi\":\"10.1007/s40328-023-00414-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this work is to investigate whether retrieving the model parameters of self-potential (SP) anomalies using a combination of differential evolution (DE) and particle swarm optimization (PSO) is possible. This approach hybridizes DE and PSO in a parallel way. Each algorithm is self-contained and obtains a [premature] solution after a user-defined generation number. This hybrid algorithm (DE/PSO) selects the best individual in DE and PSO populations and carries it to the next iteration. Cooperation of DE and PSO can significantly improve the results. Simulations through noise-free synthetic anomalies show that the DE/PSO hybrid algorithm is successful in providing more accurate solutions than those obtained using each single metaheuristic. The algorithm also speeds up the rate of convergence to get the optimum solution. We implemented the algorithm in R programming environment using available metaheuristics packages. Then, the reliability of the code was investigated using some mathematical test functions having two and higher dimensions (unknowns). The performance of the hybrid to invert SP anomalies was tested by synthetic and field data sets. The true model parameters were well-recovered from synthetic data sets including noise-free and noisy data. In the tests with field data, SP anomalies over a shallow ore deposit in Süleymanköy (Türkiye), a deep ore deposit in Arizona (USA), and multiple sources of graphite deposits in KTB borehole site (Germany) were inverted. Low misfit values between the observed and calculated SP anomalies were obtained during the test studies.</p></div>\",\"PeriodicalId\":48965,\"journal\":{\"name\":\"Acta Geodaetica et Geophysica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geodaetica et Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40328-023-00414-x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s40328-023-00414-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Inversion of self-potential data by a hybrid DE/PSO algorithm
The aim of this work is to investigate whether retrieving the model parameters of self-potential (SP) anomalies using a combination of differential evolution (DE) and particle swarm optimization (PSO) is possible. This approach hybridizes DE and PSO in a parallel way. Each algorithm is self-contained and obtains a [premature] solution after a user-defined generation number. This hybrid algorithm (DE/PSO) selects the best individual in DE and PSO populations and carries it to the next iteration. Cooperation of DE and PSO can significantly improve the results. Simulations through noise-free synthetic anomalies show that the DE/PSO hybrid algorithm is successful in providing more accurate solutions than those obtained using each single metaheuristic. The algorithm also speeds up the rate of convergence to get the optimum solution. We implemented the algorithm in R programming environment using available metaheuristics packages. Then, the reliability of the code was investigated using some mathematical test functions having two and higher dimensions (unknowns). The performance of the hybrid to invert SP anomalies was tested by synthetic and field data sets. The true model parameters were well-recovered from synthetic data sets including noise-free and noisy data. In the tests with field data, SP anomalies over a shallow ore deposit in Süleymanköy (Türkiye), a deep ore deposit in Arizona (USA), and multiple sources of graphite deposits in KTB borehole site (Germany) were inverted. Low misfit values between the observed and calculated SP anomalies were obtained during the test studies.
期刊介绍:
The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.