P. Sandhya, Tripathi Satyendra Kumar, Pachouri Chandni, P. Archna
{"title":"壳聚糖基聚合物纳米颗粒包封阿仑膦酸钠有效治疗骨质疏松症-开发释放动力学研究","authors":"P. Sandhya, Tripathi Satyendra Kumar, Pachouri Chandni, P. Archna","doi":"10.23937/2378-3664.1410036","DOIUrl":null,"url":null,"abstract":"Osteoporosis means \"Porous bone” is a disease characterized by progressive bone thinning. The deterioration of bone tissue can lead to bone fragility and fracture, especially of the hip, spine, shoulder and wrist. Osteoporosis is characterized by decreasing bone mineral density (BMD). Bisphosphonates are the most commonly prescribed drugs for the treatment of osteoporosis in the US and many other countries including India. Alendronate (Aln) is a widely used anti-osteoporosis drug, exhibits strong inhibitory effect on bone resorption performed by osteoclast cells. Alendronate-sodium is a BCS class III bisphosphonate, used in the treatment of osteoporosis, acts as a potent, specific inhibitor of osteoclast-mediated bone resorption. Alendronate was the first bisphosphonate to be approved for osteoporosis in the US in 1995. The objective of the present study is to develop, optimize, and evaluate Alendronate-loaded chitosan nanoparticles (NPs) for the treatment of osteoporosis. NPs were prepared by the Ionic gelation method and optimized for various parameters. The prepared nanoparticles were characterized using particle size analyser (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and fourier-transform infrared spectroscopy (FTIR). Formulated NPs were obtained in the average size ranging from 60 nm to 220 nm in TEM, SEM and DLS studies. The release profile was depended on the dissolution medium. The proposed nanoparticles offer an interesting alternative for alendronate delivery via the oral route. Our results indicated that alendronate-loaded chitosan nanoparticles provide an effective medication for the treatment of osteoporosis.","PeriodicalId":91094,"journal":{"name":"International journal of medical nano research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Encapsulation of Alendronate in Chitosan based Polymeric Nanoparticles for Effective Management of Osteoporosis – Development to Release Kinetic Study\",\"authors\":\"P. Sandhya, Tripathi Satyendra Kumar, Pachouri Chandni, P. Archna\",\"doi\":\"10.23937/2378-3664.1410036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Osteoporosis means \\\"Porous bone” is a disease characterized by progressive bone thinning. The deterioration of bone tissue can lead to bone fragility and fracture, especially of the hip, spine, shoulder and wrist. Osteoporosis is characterized by decreasing bone mineral density (BMD). Bisphosphonates are the most commonly prescribed drugs for the treatment of osteoporosis in the US and many other countries including India. Alendronate (Aln) is a widely used anti-osteoporosis drug, exhibits strong inhibitory effect on bone resorption performed by osteoclast cells. Alendronate-sodium is a BCS class III bisphosphonate, used in the treatment of osteoporosis, acts as a potent, specific inhibitor of osteoclast-mediated bone resorption. Alendronate was the first bisphosphonate to be approved for osteoporosis in the US in 1995. The objective of the present study is to develop, optimize, and evaluate Alendronate-loaded chitosan nanoparticles (NPs) for the treatment of osteoporosis. NPs were prepared by the Ionic gelation method and optimized for various parameters. The prepared nanoparticles were characterized using particle size analyser (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and fourier-transform infrared spectroscopy (FTIR). Formulated NPs were obtained in the average size ranging from 60 nm to 220 nm in TEM, SEM and DLS studies. The release profile was depended on the dissolution medium. The proposed nanoparticles offer an interesting alternative for alendronate delivery via the oral route. Our results indicated that alendronate-loaded chitosan nanoparticles provide an effective medication for the treatment of osteoporosis.\",\"PeriodicalId\":91094,\"journal\":{\"name\":\"International journal of medical nano research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of medical nano research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23937/2378-3664.1410036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of medical nano research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23937/2378-3664.1410036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Encapsulation of Alendronate in Chitosan based Polymeric Nanoparticles for Effective Management of Osteoporosis – Development to Release Kinetic Study
Osteoporosis means "Porous bone” is a disease characterized by progressive bone thinning. The deterioration of bone tissue can lead to bone fragility and fracture, especially of the hip, spine, shoulder and wrist. Osteoporosis is characterized by decreasing bone mineral density (BMD). Bisphosphonates are the most commonly prescribed drugs for the treatment of osteoporosis in the US and many other countries including India. Alendronate (Aln) is a widely used anti-osteoporosis drug, exhibits strong inhibitory effect on bone resorption performed by osteoclast cells. Alendronate-sodium is a BCS class III bisphosphonate, used in the treatment of osteoporosis, acts as a potent, specific inhibitor of osteoclast-mediated bone resorption. Alendronate was the first bisphosphonate to be approved for osteoporosis in the US in 1995. The objective of the present study is to develop, optimize, and evaluate Alendronate-loaded chitosan nanoparticles (NPs) for the treatment of osteoporosis. NPs were prepared by the Ionic gelation method and optimized for various parameters. The prepared nanoparticles were characterized using particle size analyser (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and fourier-transform infrared spectroscopy (FTIR). Formulated NPs were obtained in the average size ranging from 60 nm to 220 nm in TEM, SEM and DLS studies. The release profile was depended on the dissolution medium. The proposed nanoparticles offer an interesting alternative for alendronate delivery via the oral route. Our results indicated that alendronate-loaded chitosan nanoparticles provide an effective medication for the treatment of osteoporosis.