{"title":"升力体在自由表面上和近自由表面上运动的流体动力学解的涡格法","authors":"Raffaele Solari, P. Bagnerini, G. Vernengo","doi":"10.37394/232013.2022.17.4","DOIUrl":null,"url":null,"abstract":"The hydrodynamics performance of submerged and surface-piercing lifting bodies is analyzed by a potential flow model based on a Vortex Lattice Method (VLM). Such a numerical scheme, widely applied in aerodynamics, is particularly suitable to model the lifting effects thanks to the vortex distribution used to discretize the boundaries of the lifting bodies. The method has been developed with specific boundary conditions to account for the development of steady free surface wave patterns. Both submerged bodies, such as flat plates and hydrofoils, as well as planing hulls can be studied. The method is validated by comparison against available experimental data and other Computational Fluid Dynamic (CFD) results from Reynolds Averaged Navier Stokes (RANS) approaches. In all the analyzed cases, namely 2D and 3D flat plates, a NACA hydrofoil, planning flat plates and prismatic planing hulls, results have been found to be consistent with those taken as reference. The obtained hydrodynamic predictionsare discussed highlighting the advantages and the possible improvements of the developed approach.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Vortex Lattice Method for the Hydrodynamic Solution of Lifting Bodies Traveling Close and Across a Free Surface\",\"authors\":\"Raffaele Solari, P. Bagnerini, G. Vernengo\",\"doi\":\"10.37394/232013.2022.17.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hydrodynamics performance of submerged and surface-piercing lifting bodies is analyzed by a potential flow model based on a Vortex Lattice Method (VLM). Such a numerical scheme, widely applied in aerodynamics, is particularly suitable to model the lifting effects thanks to the vortex distribution used to discretize the boundaries of the lifting bodies. The method has been developed with specific boundary conditions to account for the development of steady free surface wave patterns. Both submerged bodies, such as flat plates and hydrofoils, as well as planing hulls can be studied. The method is validated by comparison against available experimental data and other Computational Fluid Dynamic (CFD) results from Reynolds Averaged Navier Stokes (RANS) approaches. In all the analyzed cases, namely 2D and 3D flat plates, a NACA hydrofoil, planning flat plates and prismatic planing hulls, results have been found to be consistent with those taken as reference. The obtained hydrodynamic predictionsare discussed highlighting the advantages and the possible improvements of the developed approach.\",\"PeriodicalId\":39418,\"journal\":{\"name\":\"WSEAS Transactions on Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232013.2022.17.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2022.17.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A Vortex Lattice Method for the Hydrodynamic Solution of Lifting Bodies Traveling Close and Across a Free Surface
The hydrodynamics performance of submerged and surface-piercing lifting bodies is analyzed by a potential flow model based on a Vortex Lattice Method (VLM). Such a numerical scheme, widely applied in aerodynamics, is particularly suitable to model the lifting effects thanks to the vortex distribution used to discretize the boundaries of the lifting bodies. The method has been developed with specific boundary conditions to account for the development of steady free surface wave patterns. Both submerged bodies, such as flat plates and hydrofoils, as well as planing hulls can be studied. The method is validated by comparison against available experimental data and other Computational Fluid Dynamic (CFD) results from Reynolds Averaged Navier Stokes (RANS) approaches. In all the analyzed cases, namely 2D and 3D flat plates, a NACA hydrofoil, planning flat plates and prismatic planing hulls, results have been found to be consistent with those taken as reference. The obtained hydrodynamic predictionsare discussed highlighting the advantages and the possible improvements of the developed approach.
期刊介绍:
WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.