基于粒子滤波器的多目标优化知识传递

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Mathematical & Computational Applications Pub Date : 2023-01-18 DOI:10.3390/mca28010014
Xilu Wang, Yaochu Jin
{"title":"基于粒子滤波器的多目标优化知识传递","authors":"Xilu Wang, Yaochu Jin","doi":"10.3390/mca28010014","DOIUrl":null,"url":null,"abstract":"Particle filters, also known as sequential Monte Carlo (SMC) methods, constitute a class of importance sampling and resampling techniques designed to use simulations to perform on-line filtering. Recently, particle filters have been extended for optimization by utilizing the ability to track a sequence of distributions. In this work, we incorporate transfer learning capabilities into the optimizer by using particle filters. To achieve this, we propose a novel particle-filter-based multi-objective optimization algorithm (PF-MOA) by transferring knowledge acquired from the search experience. The key insight adopted here is that, if we can construct a sequence of target distributions that can balance the multiple objectives and make the degree of the balance controllable, we can approximate the Pareto optimal solutions by simulating each target distribution via particle filters. As the importance weight updating step takes the previous target distribution as the proposal distribution and takes the current target distribution as the target distribution, the knowledge acquired from the previous run can be utilized in the current run by carefully designing the set of target distributions. The experimental results on the DTLZ and WFG test suites show that the proposed PF-MOA achieves competitive performance compared with state-of-the-art multi-objective evolutionary algorithms on most test instances.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge Transfer Based on Particle Filters for Multi-Objective Optimization\",\"authors\":\"Xilu Wang, Yaochu Jin\",\"doi\":\"10.3390/mca28010014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle filters, also known as sequential Monte Carlo (SMC) methods, constitute a class of importance sampling and resampling techniques designed to use simulations to perform on-line filtering. Recently, particle filters have been extended for optimization by utilizing the ability to track a sequence of distributions. In this work, we incorporate transfer learning capabilities into the optimizer by using particle filters. To achieve this, we propose a novel particle-filter-based multi-objective optimization algorithm (PF-MOA) by transferring knowledge acquired from the search experience. The key insight adopted here is that, if we can construct a sequence of target distributions that can balance the multiple objectives and make the degree of the balance controllable, we can approximate the Pareto optimal solutions by simulating each target distribution via particle filters. As the importance weight updating step takes the previous target distribution as the proposal distribution and takes the current target distribution as the target distribution, the knowledge acquired from the previous run can be utilized in the current run by carefully designing the set of target distributions. The experimental results on the DTLZ and WFG test suites show that the proposed PF-MOA achieves competitive performance compared with state-of-the-art multi-objective evolutionary algorithms on most test instances.\",\"PeriodicalId\":53224,\"journal\":{\"name\":\"Mathematical & Computational Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical & Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca28010014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

粒子滤波器,也称为顺序蒙特卡罗(SMC)方法,构成了一类重要的采样和重采样技术,旨在使用模拟进行在线滤波。最近,粒子滤波器已经通过利用跟踪分布序列的能力进行了优化扩展。在这项工作中,我们通过使用粒子过滤器将迁移学习功能集成到优化器中。为了实现这一点,我们通过转移从搜索经验中获得的知识,提出了一种新的基于粒子滤波器的多目标优化算法(PF-MOA)。这里采用的关键见解是,如果我们能够构建一系列能够平衡多个目标并使平衡程度可控的目标分布,我们就可以通过粒子滤波器模拟每个目标分布来近似Pareto最优解。由于重要性权重更新步骤将先前的目标分布作为提议分布,并将当前的目标分布用作目标分布,因此通过仔细设计目标分布集合,可以在当前运行中利用从先前运行中获取的知识。在DTLZ和WFG测试套件上的实验结果表明,在大多数测试实例上,与最先进的多目标进化算法相比,所提出的PF-MOA具有竞争性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge Transfer Based on Particle Filters for Multi-Objective Optimization
Particle filters, also known as sequential Monte Carlo (SMC) methods, constitute a class of importance sampling and resampling techniques designed to use simulations to perform on-line filtering. Recently, particle filters have been extended for optimization by utilizing the ability to track a sequence of distributions. In this work, we incorporate transfer learning capabilities into the optimizer by using particle filters. To achieve this, we propose a novel particle-filter-based multi-objective optimization algorithm (PF-MOA) by transferring knowledge acquired from the search experience. The key insight adopted here is that, if we can construct a sequence of target distributions that can balance the multiple objectives and make the degree of the balance controllable, we can approximate the Pareto optimal solutions by simulating each target distribution via particle filters. As the importance weight updating step takes the previous target distribution as the proposal distribution and takes the current target distribution as the target distribution, the knowledge acquired from the previous run can be utilized in the current run by carefully designing the set of target distributions. The experimental results on the DTLZ and WFG test suites show that the proposed PF-MOA achieves competitive performance compared with state-of-the-art multi-objective evolutionary algorithms on most test instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
期刊最新文献
Asymptotic Behavior of Solutions to a Nonlinear Swelling Soil System with Time Delay and Variable Exponents Exploring the Potential of Mixed Fourier Series in Signal Processing Applications Using One-Dimensional Smooth Closed-Form Functions with Compact Support: A Comprehensive Tutorial Conservation Laws and Symmetry Reductions of the Hunter–Saxton Equation via the Double Reduction Method FE2 Computations with Deep Neural Networks: Algorithmic Structure, Data Generation, and Implementation A Computational Fluid Dynamics-Based Model for Assessing Rupture Risk in Cerebral Arteries with Varying Aneurysm Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1