中亚晚新生代乌多坎火山高原结晶参数、熔体成因及岩浆来源

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Petrology Pub Date : 2023-03-21 DOI:10.1134/S0869591123010101
V. V. Yarmolyuk, V. M. Savatenkov, A. M. Kozlovsky, F. M. Stupak, M. V. Kuznetsov, L. V. Shpakovich
{"title":"中亚晚新生代乌多坎火山高原结晶参数、熔体成因及岩浆来源","authors":"V. V. Yarmolyuk,&nbsp;V. M. Savatenkov,&nbsp;A. M. Kozlovsky,&nbsp;F. M. Stupak,&nbsp;M. V. Kuznetsov,&nbsp;L. V. Shpakovich","doi":"10.1134/S0869591123010101","DOIUrl":null,"url":null,"abstract":"<p>Similar to the other areas of the Late Cenozoic volcanic province of Central Asia, the Udokan volcanic plateau (UVP) was formed in the time span between the Middle Miocene and the Pleistocene. Its rocks are highly alkaline and vary from alkaline picrobasalts and basanites to alkaline trachytes. The compositional variations of the rocks were controlled by two differentiation trends, which corresponded to different generation conditions of the parental magmas. The rocks with low SiO<sub>2</sub> contents (&lt;45 wt %) were formed by melts of low degrees of melting, whose melts were derived under elevated pressures and temperatures. The formation of the rocks with 45–61 wt % SiO<sub>2</sub> was associated with the differentiation of basalt melts, which were derived at shallower depths and at lower temperatures. The geochemical characteristics of the UVP basaltoids make them similar to OIB-type basalts. They are also close in Sr, Nd, and Pb isotopic composition, corresponding to the parameters of the moderately depleted mantle, which is close to the composition of oceanic basalt sources corresponding to the mantle of deep mantle plumes. The corresponding mantle component is present in the sources of other volcanic regions of the Late Cenozoic intraplate volcanic province in Central Asia, which indicates that the material of a lower mantle plume was involved in the formation of these regions.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallization Parameters, Genesis of Melts, and Sources of Magmas of the Late Cenozoic Udokan Volcanic Plateau, Central Asia\",\"authors\":\"V. V. Yarmolyuk,&nbsp;V. M. Savatenkov,&nbsp;A. M. Kozlovsky,&nbsp;F. M. Stupak,&nbsp;M. V. Kuznetsov,&nbsp;L. V. Shpakovich\",\"doi\":\"10.1134/S0869591123010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Similar to the other areas of the Late Cenozoic volcanic province of Central Asia, the Udokan volcanic plateau (UVP) was formed in the time span between the Middle Miocene and the Pleistocene. Its rocks are highly alkaline and vary from alkaline picrobasalts and basanites to alkaline trachytes. The compositional variations of the rocks were controlled by two differentiation trends, which corresponded to different generation conditions of the parental magmas. The rocks with low SiO<sub>2</sub> contents (&lt;45 wt %) were formed by melts of low degrees of melting, whose melts were derived under elevated pressures and temperatures. The formation of the rocks with 45–61 wt % SiO<sub>2</sub> was associated with the differentiation of basalt melts, which were derived at shallower depths and at lower temperatures. The geochemical characteristics of the UVP basaltoids make them similar to OIB-type basalts. They are also close in Sr, Nd, and Pb isotopic composition, corresponding to the parameters of the moderately depleted mantle, which is close to the composition of oceanic basalt sources corresponding to the mantle of deep mantle plumes. The corresponding mantle component is present in the sources of other volcanic regions of the Late Cenozoic intraplate volcanic province in Central Asia, which indicates that the material of a lower mantle plume was involved in the formation of these regions.</p>\",\"PeriodicalId\":20026,\"journal\":{\"name\":\"Petrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869591123010101\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0869591123010101","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

与中亚晚新生代火山省的其他地区相似,乌多坎火山高原形成于中中新世至更新世之间。其岩石呈高碱性,从碱性微玄武岩和玄武岩到碱性粗叶岩不一而足。岩石成分的变化受两种分异趋势的控制,这两种分异趋势对应于母岩浆的不同生成条件。低SiO2含量(45 wt %)的岩石是由低熔融程度的熔体形成的,这些熔体是在高压和高温下形成的。SiO2含量为45 ~ 61 wt %的岩石的形成与玄武岩熔体的分异有关,这些熔体来源于较浅的深度和较低的温度。UVP玄武岩的地球化学特征与obb型玄武岩相似。Sr、Nd、Pb同位素组成接近,与中贫地幔参数相对应,与深部地幔柱相对应的洋玄武岩源组成接近。中亚晚新生代板内火山省其它火山岩源区中均存在相应的地幔成分,表明这些地区的形成中有下地幔柱物质参与。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystallization Parameters, Genesis of Melts, and Sources of Magmas of the Late Cenozoic Udokan Volcanic Plateau, Central Asia

Similar to the other areas of the Late Cenozoic volcanic province of Central Asia, the Udokan volcanic plateau (UVP) was formed in the time span between the Middle Miocene and the Pleistocene. Its rocks are highly alkaline and vary from alkaline picrobasalts and basanites to alkaline trachytes. The compositional variations of the rocks were controlled by two differentiation trends, which corresponded to different generation conditions of the parental magmas. The rocks with low SiO2 contents (<45 wt %) were formed by melts of low degrees of melting, whose melts were derived under elevated pressures and temperatures. The formation of the rocks with 45–61 wt % SiO2 was associated with the differentiation of basalt melts, which were derived at shallower depths and at lower temperatures. The geochemical characteristics of the UVP basaltoids make them similar to OIB-type basalts. They are also close in Sr, Nd, and Pb isotopic composition, corresponding to the parameters of the moderately depleted mantle, which is close to the composition of oceanic basalt sources corresponding to the mantle of deep mantle plumes. The corresponding mantle component is present in the sources of other volcanic regions of the Late Cenozoic intraplate volcanic province in Central Asia, which indicates that the material of a lower mantle plume was involved in the formation of these regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petrology
Petrology 地学-地球科学综合
CiteScore
2.40
自引率
20.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Petrology is a journal of magmatic, metamorphic, and experimental petrology, mineralogy, and geochemistry. The journal offers comprehensive information on all multidisciplinary aspects of theoretical, experimental, and applied petrology. By giving special consideration to studies on the petrography of different regions of the former Soviet Union, Petrology provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Osumilite-Bearing Lavas of the Keli Highland (Greater Caucasus): Petrological and Geochemical Characteristics, Mineral Composition, and Conditions of Melt Generation The First Discovery of Archean Dolerite Dikes in the Western Part of the Aldan Shield Generalized P–T Path and Fluid Regime of the Exhumation of Metapelites in the Central Zone of the Limpopo Complex, South Africa Raman Spectroscopic Data of the Quenching Phases of a Pt Solution in a Low Water Reduced Carbonic Fluid at P = 200 and T = 950–1000°C Genesis of Triassic Buziwannan Granites in the West Kunlun Orogen Belt, China: Constraints from in Situ Major, Trace and Sr Isotope Analyses of Plagioclase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1