V. V. Yarmolyuk, V. M. Savatenkov, A. M. Kozlovsky, F. M. Stupak, M. V. Kuznetsov, L. V. Shpakovich
{"title":"中亚晚新生代乌多坎火山高原结晶参数、熔体成因及岩浆来源","authors":"V. V. Yarmolyuk, V. M. Savatenkov, A. M. Kozlovsky, F. M. Stupak, M. V. Kuznetsov, L. V. Shpakovich","doi":"10.1134/S0869591123010101","DOIUrl":null,"url":null,"abstract":"<p>Similar to the other areas of the Late Cenozoic volcanic province of Central Asia, the Udokan volcanic plateau (UVP) was formed in the time span between the Middle Miocene and the Pleistocene. Its rocks are highly alkaline and vary from alkaline picrobasalts and basanites to alkaline trachytes. The compositional variations of the rocks were controlled by two differentiation trends, which corresponded to different generation conditions of the parental magmas. The rocks with low SiO<sub>2</sub> contents (<45 wt %) were formed by melts of low degrees of melting, whose melts were derived under elevated pressures and temperatures. The formation of the rocks with 45–61 wt % SiO<sub>2</sub> was associated with the differentiation of basalt melts, which were derived at shallower depths and at lower temperatures. The geochemical characteristics of the UVP basaltoids make them similar to OIB-type basalts. They are also close in Sr, Nd, and Pb isotopic composition, corresponding to the parameters of the moderately depleted mantle, which is close to the composition of oceanic basalt sources corresponding to the mantle of deep mantle plumes. The corresponding mantle component is present in the sources of other volcanic regions of the Late Cenozoic intraplate volcanic province in Central Asia, which indicates that the material of a lower mantle plume was involved in the formation of these regions.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 1","pages":"S1 - S24"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallization Parameters, Genesis of Melts, and Sources of Magmas of the Late Cenozoic Udokan Volcanic Plateau, Central Asia\",\"authors\":\"V. V. Yarmolyuk, V. M. Savatenkov, A. M. Kozlovsky, F. M. Stupak, M. V. Kuznetsov, L. V. Shpakovich\",\"doi\":\"10.1134/S0869591123010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Similar to the other areas of the Late Cenozoic volcanic province of Central Asia, the Udokan volcanic plateau (UVP) was formed in the time span between the Middle Miocene and the Pleistocene. Its rocks are highly alkaline and vary from alkaline picrobasalts and basanites to alkaline trachytes. The compositional variations of the rocks were controlled by two differentiation trends, which corresponded to different generation conditions of the parental magmas. The rocks with low SiO<sub>2</sub> contents (<45 wt %) were formed by melts of low degrees of melting, whose melts were derived under elevated pressures and temperatures. The formation of the rocks with 45–61 wt % SiO<sub>2</sub> was associated with the differentiation of basalt melts, which were derived at shallower depths and at lower temperatures. The geochemical characteristics of the UVP basaltoids make them similar to OIB-type basalts. They are also close in Sr, Nd, and Pb isotopic composition, corresponding to the parameters of the moderately depleted mantle, which is close to the composition of oceanic basalt sources corresponding to the mantle of deep mantle plumes. The corresponding mantle component is present in the sources of other volcanic regions of the Late Cenozoic intraplate volcanic province in Central Asia, which indicates that the material of a lower mantle plume was involved in the formation of these regions.</p>\",\"PeriodicalId\":20026,\"journal\":{\"name\":\"Petrology\",\"volume\":\"30 1\",\"pages\":\"S1 - S24\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869591123010101\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0869591123010101","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Crystallization Parameters, Genesis of Melts, and Sources of Magmas of the Late Cenozoic Udokan Volcanic Plateau, Central Asia
Similar to the other areas of the Late Cenozoic volcanic province of Central Asia, the Udokan volcanic plateau (UVP) was formed in the time span between the Middle Miocene and the Pleistocene. Its rocks are highly alkaline and vary from alkaline picrobasalts and basanites to alkaline trachytes. The compositional variations of the rocks were controlled by two differentiation trends, which corresponded to different generation conditions of the parental magmas. The rocks with low SiO2 contents (<45 wt %) were formed by melts of low degrees of melting, whose melts were derived under elevated pressures and temperatures. The formation of the rocks with 45–61 wt % SiO2 was associated with the differentiation of basalt melts, which were derived at shallower depths and at lower temperatures. The geochemical characteristics of the UVP basaltoids make them similar to OIB-type basalts. They are also close in Sr, Nd, and Pb isotopic composition, corresponding to the parameters of the moderately depleted mantle, which is close to the composition of oceanic basalt sources corresponding to the mantle of deep mantle plumes. The corresponding mantle component is present in the sources of other volcanic regions of the Late Cenozoic intraplate volcanic province in Central Asia, which indicates that the material of a lower mantle plume was involved in the formation of these regions.
期刊介绍:
Petrology is a journal of magmatic, metamorphic, and experimental petrology, mineralogy, and geochemistry. The journal offers comprehensive information on all multidisciplinary aspects of theoretical, experimental, and applied petrology. By giving special consideration to studies on the petrography of different regions of the former Soviet Union, Petrology provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.