不同氮素有效性下C3和C4植物间通过共同菌根网络的氮素移栽

IF 3 2区 环境科学与生态学 Q2 ECOLOGY Journal of Plant Ecology Pub Date : 2022-04-16 DOI:10.1093/jpe/rtac058
M. Muneer, Xiaohui Chen, M. Z. Munir, Z. Nisa, M. Saddique, S. Mehmood, D. Su, Chaoyuan Zheng, B. Ji
{"title":"不同氮素有效性下C3和C4植物间通过共同菌根网络的氮素移栽","authors":"M. Muneer, Xiaohui Chen, M. Z. Munir, Z. Nisa, M. Saddique, S. Mehmood, D. Su, Chaoyuan Zheng, B. Ji","doi":"10.1093/jpe/rtac058","DOIUrl":null,"url":null,"abstract":"\n Hyphae of arbuscular mycorrhizal fungi (AMF) in soil often form complex mycorrhizal networks among roots of same or different plant species for transfer of nutrients from one plant to another. However, the effect of soil nitrogen (N) availability on nutrient transfer between different plant species via common mycorrhizal networks (CMNs) has not been experimentally examined. In order to quantify CMN-mediated nutrient transfer between Leymus chinensis (LC) and Cleistogene squarrosa (CS), two systems, i.e., the CS-LC system (CS and LC were donor and recipient, respectively) and the LC-CS system (LC and CS were donor and recipient, respectively) were established. Stable isotopic 15N was applied to track N transfer between heterospecific seedlings connected by CMNs under three levels of soil N additions: no N addition control (N0), N addition with 7 mg kg -1 (N1) and N addition with 14 mg kg -1 (N2). In the CS-LC system, the highest rate of AMF colonization and hyphal length density (HLD) were found at N1. In contrast, maximum AMF colonization rate and HLD were recorded at N2 in LC-CS system. Consequently, plant biomass was significantly higher under N1 and N2 levels in CS-LC and LC-CS systems, respectively. Moreover, in CS-LC system, 15N transfer rate ranged from 16% to 61%, with maximum transfer rate at N1. For LC-CS system, 15N transfer rate was much lower, with the maximum occurring at N0. These findings suggest that CMNs could potentially regulate N-transfer from a donor to recipient plant depending upon the strength of individual plant carbon sink.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Interplant transfer of nitrogen between C3 and C4 plants through common mycorrhizal networks under different nitrogen availability\",\"authors\":\"M. Muneer, Xiaohui Chen, M. Z. Munir, Z. Nisa, M. Saddique, S. Mehmood, D. Su, Chaoyuan Zheng, B. Ji\",\"doi\":\"10.1093/jpe/rtac058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hyphae of arbuscular mycorrhizal fungi (AMF) in soil often form complex mycorrhizal networks among roots of same or different plant species for transfer of nutrients from one plant to another. However, the effect of soil nitrogen (N) availability on nutrient transfer between different plant species via common mycorrhizal networks (CMNs) has not been experimentally examined. In order to quantify CMN-mediated nutrient transfer between Leymus chinensis (LC) and Cleistogene squarrosa (CS), two systems, i.e., the CS-LC system (CS and LC were donor and recipient, respectively) and the LC-CS system (LC and CS were donor and recipient, respectively) were established. Stable isotopic 15N was applied to track N transfer between heterospecific seedlings connected by CMNs under three levels of soil N additions: no N addition control (N0), N addition with 7 mg kg -1 (N1) and N addition with 14 mg kg -1 (N2). In the CS-LC system, the highest rate of AMF colonization and hyphal length density (HLD) were found at N1. In contrast, maximum AMF colonization rate and HLD were recorded at N2 in LC-CS system. Consequently, plant biomass was significantly higher under N1 and N2 levels in CS-LC and LC-CS systems, respectively. Moreover, in CS-LC system, 15N transfer rate ranged from 16% to 61%, with maximum transfer rate at N1. For LC-CS system, 15N transfer rate was much lower, with the maximum occurring at N0. These findings suggest that CMNs could potentially regulate N-transfer from a donor to recipient plant depending upon the strength of individual plant carbon sink.\",\"PeriodicalId\":50085,\"journal\":{\"name\":\"Journal of Plant Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jpe/rtac058\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jpe/rtac058","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

丛枝菌根真菌(AMF)在土壤中的菌丝常常在相同或不同植物的根系之间形成复杂的菌根网络,以实现养分在植物间的传递。然而,土壤氮(N)有效性对不同植物之间通过常见菌根网络(CMNs)进行养分转移的影响尚未得到实验研究。为了定量测定cmn介导的羊草(Leymus chinensis, LC)与方闭基因(Cleistogene squarrosa, CS)之间的营养传递,建立了CS-LC系统(CS和LC分别为供体和受体)和LC-CS系统(LC和CS分别为供体和受体)。应用稳定同位素15N,在不加氮(N0)、加氮7 mg kg -1 (N1)和加氮14 mg kg -1 (N2) 3种土壤施氮水平下,跟踪CMNs连接的异种幼苗间的氮转移。在CS-LC体系中,AMF定殖率和菌丝长度密度(HLD)在N1时最高。在LC-CS体系中,N2时AMF定殖率和HLD最高。因此,在N1和N2水平下,CS-LC和LC-CS系统的植物生物量均显著增加。在CS-LC体系中,15N的传输率在16% ~ 61%之间,在N1时传输率最大。LC-CS体系的15N传输速率较低,最大传输速率出现在N0。这些发现表明,CMNs可能根据单个植物碳汇的强度,潜在地调节n从供体到受体植物的转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interplant transfer of nitrogen between C3 and C4 plants through common mycorrhizal networks under different nitrogen availability
Hyphae of arbuscular mycorrhizal fungi (AMF) in soil often form complex mycorrhizal networks among roots of same or different plant species for transfer of nutrients from one plant to another. However, the effect of soil nitrogen (N) availability on nutrient transfer between different plant species via common mycorrhizal networks (CMNs) has not been experimentally examined. In order to quantify CMN-mediated nutrient transfer between Leymus chinensis (LC) and Cleistogene squarrosa (CS), two systems, i.e., the CS-LC system (CS and LC were donor and recipient, respectively) and the LC-CS system (LC and CS were donor and recipient, respectively) were established. Stable isotopic 15N was applied to track N transfer between heterospecific seedlings connected by CMNs under three levels of soil N additions: no N addition control (N0), N addition with 7 mg kg -1 (N1) and N addition with 14 mg kg -1 (N2). In the CS-LC system, the highest rate of AMF colonization and hyphal length density (HLD) were found at N1. In contrast, maximum AMF colonization rate and HLD were recorded at N2 in LC-CS system. Consequently, plant biomass was significantly higher under N1 and N2 levels in CS-LC and LC-CS systems, respectively. Moreover, in CS-LC system, 15N transfer rate ranged from 16% to 61%, with maximum transfer rate at N1. For LC-CS system, 15N transfer rate was much lower, with the maximum occurring at N0. These findings suggest that CMNs could potentially regulate N-transfer from a donor to recipient plant depending upon the strength of individual plant carbon sink.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plant Ecology
Journal of Plant Ecology 生物-植物科学
CiteScore
4.60
自引率
18.50%
发文量
134
审稿时长
3 months
期刊介绍: Journal of Plant Ecology (JPE) serves as an important medium for ecologists to present research findings and discuss challenging issues in the broad field of plants and their interactions with biotic and abiotic environment. The JPE will cover all aspects of plant ecology, including plant ecophysiology, population ecology, community ecology, ecosystem ecology and landscape ecology as well as conservation ecology, evolutionary ecology, and theoretical ecology.
期刊最新文献
An improved method for edge detection based on neighbor distance for processing hemispheric photography in studying canopy structure and radiative transfer Publication-level analysis of Journal of Plant Ecology during 2018–2022 Effects and driving factors of domestic sewage from different sources on nitrous oxide emissions in a bog Soil hydrological processes as affected by the conversion of natural tropical rainforest to monoculture rubber plantations Effects of arbuscular mycorrhizal fungi on carbon assimilation and ecological stoichiometry of maize (Zea mays) under combined abiotic stresses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1