纸板平面外单轴加载的实验方法与评价

IF 0.9 4区 农林科学 Q3 MATERIALS SCIENCE, PAPER & WOOD Nordic Pulp & Paper Research Journal Pub Date : 2023-06-14 DOI:10.1515/npprj-2023-0017
Kristofer Robertsson, J. Engqvist, M. Wallin, M. Ristinmaa, J. Tryding, Eric Borgqvist
{"title":"纸板平面外单轴加载的实验方法与评价","authors":"Kristofer Robertsson, J. Engqvist, M. Wallin, M. Ristinmaa, J. Tryding, Eric Borgqvist","doi":"10.1515/npprj-2023-0017","DOIUrl":null,"url":null,"abstract":"Abstract Development of three-dimensional continuum models for paperboard is an active field and the need for reliable measurements to calibrate and validate such models is evident. An experimental device and protocol for cyclic out-of-plane loading is developed. This loading sequence is present during converting operations of paperboard. The experimental tests reveals that the commonly observed soft initial non-linear response during out-of-plane compression is a structural effect that stems from the surface roughness rather than being an inherent material behavior. A gluing procedure, used to perform cyclic out-of-plane loading, is mitigating the effect of the surface roughness. Several novel cyclic loading experiments are performed, alternating between compression and tension which indicates that fiber bonds are not recovered in compression after they have been broken through delamination. Measurements also show that the transition in compression and tension is continuous, hence the use of a switch function present in a number of constitutive continuum models for paperboard is deemed questionable.","PeriodicalId":19315,"journal":{"name":"Nordic Pulp & Paper Research Journal","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Out-of-plane uniaxial loading of paperboard: experimental procedure and evaluation\",\"authors\":\"Kristofer Robertsson, J. Engqvist, M. Wallin, M. Ristinmaa, J. Tryding, Eric Borgqvist\",\"doi\":\"10.1515/npprj-2023-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Development of three-dimensional continuum models for paperboard is an active field and the need for reliable measurements to calibrate and validate such models is evident. An experimental device and protocol for cyclic out-of-plane loading is developed. This loading sequence is present during converting operations of paperboard. The experimental tests reveals that the commonly observed soft initial non-linear response during out-of-plane compression is a structural effect that stems from the surface roughness rather than being an inherent material behavior. A gluing procedure, used to perform cyclic out-of-plane loading, is mitigating the effect of the surface roughness. Several novel cyclic loading experiments are performed, alternating between compression and tension which indicates that fiber bonds are not recovered in compression after they have been broken through delamination. Measurements also show that the transition in compression and tension is continuous, hence the use of a switch function present in a number of constitutive continuum models for paperboard is deemed questionable.\",\"PeriodicalId\":19315,\"journal\":{\"name\":\"Nordic Pulp & Paper Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nordic Pulp & Paper Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/npprj-2023-0017\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Pulp & Paper Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/npprj-2023-0017","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

摘要纸板三维连续体模型的开发是一个活跃的领域,显然需要可靠的测量来校准和验证这些模型。开发了一种用于平面外循环加载的实验装置和协议。这种装载顺序存在于纸板的转换操作期间。实验测试表明,在平面外压缩过程中常见的软初始非线性响应是一种结构效应,源于表面粗糙度,而不是固有的材料行为。用于执行循环平面外加载的胶合程序可以减轻表面粗糙度的影响。进行了几个新的循环加载实验,在压缩和拉伸之间交替,这表明纤维结合在通过分层后在压缩中没有恢复。测量还表明,压缩和拉伸的转变是连续的,因此在纸板的许多本构连续体模型中使用切换函数被认为是有问题的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Out-of-plane uniaxial loading of paperboard: experimental procedure and evaluation
Abstract Development of three-dimensional continuum models for paperboard is an active field and the need for reliable measurements to calibrate and validate such models is evident. An experimental device and protocol for cyclic out-of-plane loading is developed. This loading sequence is present during converting operations of paperboard. The experimental tests reveals that the commonly observed soft initial non-linear response during out-of-plane compression is a structural effect that stems from the surface roughness rather than being an inherent material behavior. A gluing procedure, used to perform cyclic out-of-plane loading, is mitigating the effect of the surface roughness. Several novel cyclic loading experiments are performed, alternating between compression and tension which indicates that fiber bonds are not recovered in compression after they have been broken through delamination. Measurements also show that the transition in compression and tension is continuous, hence the use of a switch function present in a number of constitutive continuum models for paperboard is deemed questionable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nordic Pulp & Paper Research Journal
Nordic Pulp & Paper Research Journal 工程技术-材料科学:纸与木材
CiteScore
2.50
自引率
16.70%
发文量
62
审稿时长
1 months
期刊介绍: Nordic Pulp & Paper Research Journal (NPPRJ) is a peer-reviewed, international scientific journal covering to-date science and technology research in the areas of wood-based biomass: Pulp and paper: products and processes Wood constituents: characterization and nanotechnologies Bio-refining, recovery and energy issues Utilization of side-streams from pulping processes Novel fibre-based, sustainable and smart materials. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes. Topics Cutting-edge topics such as, but not limited to, the following: Biorefining, energy issues Wood fibre characterization and nanotechnology Side-streams and new products from wood pulping processes Mechanical pulping Chemical pulping, recovery and bleaching Paper technology Paper chemistry and physics Coating Paper-ink-interactions Recycling Environmental issues.
期刊最新文献
Development of fibre properties in mill scale: high- and low consistency refining of thermomechanical pulp (part 2) – Importance of fibre curl Influence mechanism of paper mechanical properties: numerical simulation and experimental verification based on a fiber network Biobased nanocomposite coating of paper for packaging Evaluation of oxygen delignified fibers with high water absorbency, as a greener alternative to fully bleached fibers for tissue paper Effects of xylan-modified precipitated calcium carbonate filler on the properties of paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1