{"title":"基于双通道卷积神经网络的热障涂层脱胶缺陷太赫兹快速成像方法","authors":"Binghua Cao, Dalin Yang, Mengbao Fan","doi":"10.32548/2023.me-04302","DOIUrl":null,"url":null,"abstract":"To tackle the inefficiency of terahertz (THz)-based C-scan defect detection for thermal barrier coatings (TBCs), a dual-channel convolutional neural network–based THz fast imaging method is proposed. In this paper, the finite-difference time-domain (FDTD) method is used to prepare the training set. In the numerical simulation, the actual C-scan step is simulated by grid division of different sizes. The large step THz image is preliminarily reconstructed by bicubic interpolation, and then the deep and shallow features in the image are extracted by the dual-channel convolution neural network and the image under small step is reconstructed by different weight refusion, so as to improve the detection efficiency by reducing the number of C-scan points. Gaussian white noise with different distributions is employed when simulating the real test image. The experimental results show that compared with bicubic, ICBI, SRCNN, and ResNet, the dual-channel convolutional neural network improves PSNR (peak signal-to-noise ratio) by 2.85, 2.81, 2.25, and 1.54, and improves by 0.019, 0.014, 0.014, and 0.009 on SSIM (structural similarity).","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Terahertz Fast Imaging Method for Debonding Defects of Thermal Barrier Coatings Based on Dual-Channel Convolutional Neural Network\",\"authors\":\"Binghua Cao, Dalin Yang, Mengbao Fan\",\"doi\":\"10.32548/2023.me-04302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To tackle the inefficiency of terahertz (THz)-based C-scan defect detection for thermal barrier coatings (TBCs), a dual-channel convolutional neural network–based THz fast imaging method is proposed. In this paper, the finite-difference time-domain (FDTD) method is used to prepare the training set. In the numerical simulation, the actual C-scan step is simulated by grid division of different sizes. The large step THz image is preliminarily reconstructed by bicubic interpolation, and then the deep and shallow features in the image are extracted by the dual-channel convolution neural network and the image under small step is reconstructed by different weight refusion, so as to improve the detection efficiency by reducing the number of C-scan points. Gaussian white noise with different distributions is employed when simulating the real test image. The experimental results show that compared with bicubic, ICBI, SRCNN, and ResNet, the dual-channel convolutional neural network improves PSNR (peak signal-to-noise ratio) by 2.85, 2.81, 2.25, and 1.54, and improves by 0.019, 0.014, 0.014, and 0.009 on SSIM (structural similarity).\",\"PeriodicalId\":49876,\"journal\":{\"name\":\"Materials Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32548/2023.me-04302\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2023.me-04302","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
A Terahertz Fast Imaging Method for Debonding Defects of Thermal Barrier Coatings Based on Dual-Channel Convolutional Neural Network
To tackle the inefficiency of terahertz (THz)-based C-scan defect detection for thermal barrier coatings (TBCs), a dual-channel convolutional neural network–based THz fast imaging method is proposed. In this paper, the finite-difference time-domain (FDTD) method is used to prepare the training set. In the numerical simulation, the actual C-scan step is simulated by grid division of different sizes. The large step THz image is preliminarily reconstructed by bicubic interpolation, and then the deep and shallow features in the image are extracted by the dual-channel convolution neural network and the image under small step is reconstructed by different weight refusion, so as to improve the detection efficiency by reducing the number of C-scan points. Gaussian white noise with different distributions is employed when simulating the real test image. The experimental results show that compared with bicubic, ICBI, SRCNN, and ResNet, the dual-channel convolutional neural network improves PSNR (peak signal-to-noise ratio) by 2.85, 2.81, 2.25, and 1.54, and improves by 0.019, 0.014, 0.014, and 0.009 on SSIM (structural similarity).
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.