Yi Han, Cheng Li, Qing Cai, Xiaorui Bao, Li-Ying Tang, Haiyong Ao, Jing Liu, M. Jin, Yueping Zhou, Y. Wan, Zuguo Liu
{"title":"细菌纤维素/聚乙烯醇水凝胶复合材料作为组织工程角膜基质的研究","authors":"Yi Han, Cheng Li, Qing Cai, Xiaorui Bao, Li-Ying Tang, Haiyong Ao, Jing Liu, M. Jin, Yueping Zhou, Y. Wan, Zuguo Liu","doi":"10.1088/1748-605X/ab56ca","DOIUrl":null,"url":null,"abstract":"Corneal transplantation is currently the major solution in the treatment of severe corneal diseases. However, it is restricted due to the limited number of corneal donors. A tissue-engineered cornea is a potential substitute which could help overcome this limitation. This research envisages the development of a novel tissue-engineered corneal stroma consisting of bacterial cellulose (BC)/poly(vinyl alcohol) (PVA) hydrogel composites for reconstructing the cornea. It was found that the properties of BC/PVA were better suited for use as a corneal stroma material than the BC hydrogel. The human corneal stromal cells (hCSCs) were used to evaluate the cytotoxicity of the materials, wherein BC/PVA displayed excellent biocompatibility with these cells. Furthermore, in the in vivo studies, the BC/PVA was transplanted intrastromally in rabbits. After four weeks, the cornea remained almost transparent, and without obvious inflammation, sensitization or neovascularization, as confirmed by the clinical and histological examinations. Our results demonstrate that BC/PVA was well-tolerated in the rabbit cornea, and may be a potential substitute for corneal stroma.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab56ca","citationCount":"23","resultStr":"{\"title\":\"Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma\",\"authors\":\"Yi Han, Cheng Li, Qing Cai, Xiaorui Bao, Li-Ying Tang, Haiyong Ao, Jing Liu, M. Jin, Yueping Zhou, Y. Wan, Zuguo Liu\",\"doi\":\"10.1088/1748-605X/ab56ca\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corneal transplantation is currently the major solution in the treatment of severe corneal diseases. However, it is restricted due to the limited number of corneal donors. A tissue-engineered cornea is a potential substitute which could help overcome this limitation. This research envisages the development of a novel tissue-engineered corneal stroma consisting of bacterial cellulose (BC)/poly(vinyl alcohol) (PVA) hydrogel composites for reconstructing the cornea. It was found that the properties of BC/PVA were better suited for use as a corneal stroma material than the BC hydrogel. The human corneal stromal cells (hCSCs) were used to evaluate the cytotoxicity of the materials, wherein BC/PVA displayed excellent biocompatibility with these cells. Furthermore, in the in vivo studies, the BC/PVA was transplanted intrastromally in rabbits. After four weeks, the cornea remained almost transparent, and without obvious inflammation, sensitization or neovascularization, as confirmed by the clinical and histological examinations. Our results demonstrate that BC/PVA was well-tolerated in the rabbit cornea, and may be a potential substitute for corneal stroma.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2019-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/1748-605X/ab56ca\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ab56ca\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab56ca","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma
Corneal transplantation is currently the major solution in the treatment of severe corneal diseases. However, it is restricted due to the limited number of corneal donors. A tissue-engineered cornea is a potential substitute which could help overcome this limitation. This research envisages the development of a novel tissue-engineered corneal stroma consisting of bacterial cellulose (BC)/poly(vinyl alcohol) (PVA) hydrogel composites for reconstructing the cornea. It was found that the properties of BC/PVA were better suited for use as a corneal stroma material than the BC hydrogel. The human corneal stromal cells (hCSCs) were used to evaluate the cytotoxicity of the materials, wherein BC/PVA displayed excellent biocompatibility with these cells. Furthermore, in the in vivo studies, the BC/PVA was transplanted intrastromally in rabbits. After four weeks, the cornea remained almost transparent, and without obvious inflammation, sensitization or neovascularization, as confirmed by the clinical and histological examinations. Our results demonstrate that BC/PVA was well-tolerated in the rabbit cornea, and may be a potential substitute for corneal stroma.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters