细菌纤维素/聚乙烯醇水凝胶复合材料作为组织工程角膜基质的研究

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical materials Pub Date : 2019-11-12 DOI:10.1088/1748-605X/ab56ca
Yi Han, Cheng Li, Qing Cai, Xiaorui Bao, Li-Ying Tang, Haiyong Ao, Jing Liu, M. Jin, Yueping Zhou, Y. Wan, Zuguo Liu
{"title":"细菌纤维素/聚乙烯醇水凝胶复合材料作为组织工程角膜基质的研究","authors":"Yi Han, Cheng Li, Qing Cai, Xiaorui Bao, Li-Ying Tang, Haiyong Ao, Jing Liu, M. Jin, Yueping Zhou, Y. Wan, Zuguo Liu","doi":"10.1088/1748-605X/ab56ca","DOIUrl":null,"url":null,"abstract":"Corneal transplantation is currently the major solution in the treatment of severe corneal diseases. However, it is restricted due to the limited number of corneal donors. A tissue-engineered cornea is a potential substitute which could help overcome this limitation. This research envisages the development of a novel tissue-engineered corneal stroma consisting of bacterial cellulose (BC)/poly(vinyl alcohol) (PVA) hydrogel composites for reconstructing the cornea. It was found that the properties of BC/PVA were better suited for use as a corneal stroma material than the BC hydrogel. The human corneal stromal cells (hCSCs) were used to evaluate the cytotoxicity of the materials, wherein BC/PVA displayed excellent biocompatibility with these cells. Furthermore, in the in vivo studies, the BC/PVA was transplanted intrastromally in rabbits. After four weeks, the cornea remained almost transparent, and without obvious inflammation, sensitization or neovascularization, as confirmed by the clinical and histological examinations. Our results demonstrate that BC/PVA was well-tolerated in the rabbit cornea, and may be a potential substitute for corneal stroma.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab56ca","citationCount":"23","resultStr":"{\"title\":\"Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma\",\"authors\":\"Yi Han, Cheng Li, Qing Cai, Xiaorui Bao, Li-Ying Tang, Haiyong Ao, Jing Liu, M. Jin, Yueping Zhou, Y. Wan, Zuguo Liu\",\"doi\":\"10.1088/1748-605X/ab56ca\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corneal transplantation is currently the major solution in the treatment of severe corneal diseases. However, it is restricted due to the limited number of corneal donors. A tissue-engineered cornea is a potential substitute which could help overcome this limitation. This research envisages the development of a novel tissue-engineered corneal stroma consisting of bacterial cellulose (BC)/poly(vinyl alcohol) (PVA) hydrogel composites for reconstructing the cornea. It was found that the properties of BC/PVA were better suited for use as a corneal stroma material than the BC hydrogel. The human corneal stromal cells (hCSCs) were used to evaluate the cytotoxicity of the materials, wherein BC/PVA displayed excellent biocompatibility with these cells. Furthermore, in the in vivo studies, the BC/PVA was transplanted intrastromally in rabbits. After four weeks, the cornea remained almost transparent, and without obvious inflammation, sensitization or neovascularization, as confirmed by the clinical and histological examinations. Our results demonstrate that BC/PVA was well-tolerated in the rabbit cornea, and may be a potential substitute for corneal stroma.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2019-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/1748-605X/ab56ca\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ab56ca\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab56ca","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 23

摘要

角膜移植是目前治疗严重角膜疾病的主要解决方案。然而,由于角膜捐献者的数量有限,它受到了限制。组织工程角膜是一种潜在的替代品,可以帮助克服这一限制。本研究设想开发一种由细菌纤维素(BC)/聚乙烯醇(PVA)水凝胶复合材料组成的新型组织工程角膜基质,用于重建角膜。发现BC/PVA的性能比BC水凝胶更适合用作角膜基质材料。使用人角膜基质细胞(hCSCs)来评估材料的细胞毒性,其中BC/PVA与这些细胞表现出优异的生物相容性。此外,在体内研究中,将BC/PVA移植到兔子体内。四周后,角膜几乎保持透明,没有明显的炎症、致敏或新生血管,临床和组织学检查证实了这一点。我们的结果表明BC/PVA在兔角膜中具有良好的耐受性,可能是角膜基质的潜在替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma
Corneal transplantation is currently the major solution in the treatment of severe corneal diseases. However, it is restricted due to the limited number of corneal donors. A tissue-engineered cornea is a potential substitute which could help overcome this limitation. This research envisages the development of a novel tissue-engineered corneal stroma consisting of bacterial cellulose (BC)/poly(vinyl alcohol) (PVA) hydrogel composites for reconstructing the cornea. It was found that the properties of BC/PVA were better suited for use as a corneal stroma material than the BC hydrogel. The human corneal stromal cells (hCSCs) were used to evaluate the cytotoxicity of the materials, wherein BC/PVA displayed excellent biocompatibility with these cells. Furthermore, in the in vivo studies, the BC/PVA was transplanted intrastromally in rabbits. After four weeks, the cornea remained almost transparent, and without obvious inflammation, sensitization or neovascularization, as confirmed by the clinical and histological examinations. Our results demonstrate that BC/PVA was well-tolerated in the rabbit cornea, and may be a potential substitute for corneal stroma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
期刊最新文献
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing. Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitro and in vivo. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles Antiproliferative efficacy and mechanism of action of garlic phytochemicals-functionalized gold nanoparticles in triple-negative breast cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1