数字泵作动器在飞机上的位置和速度控制

IF 0.7 Q4 ENGINEERING, MECHANICAL International Journal of Fluid Power Pub Date : 2023-01-17 DOI:10.13052/ijfp1439-9776.2411
M. P. Nostrani, Henrique Raduenz, A. Dell’Amico, Anders Petter Krus, V. Negri
{"title":"数字泵作动器在飞机上的位置和速度控制","authors":"M. P. Nostrani, Henrique Raduenz, A. Dell’Amico, Anders Petter Krus, V. Negri","doi":"10.13052/ijfp1439-9776.2411","DOIUrl":null,"url":null,"abstract":"This paper presents a multi-chamber hydraulic actuator controlled by digital pumps and on/off valves, in order to improve the efficiency of hydraulic systems applied in aircraft for flight control. Hydraulic positioning systems are used in many different applications, such as mobile machinery, industry and aerospace. In aircraft, the hydraulic actuators are used at flight control surfaces, cargo doors, steering, landing gear and so one. However, the massive use of resistive control techniques, which throttles the passages of the hydraulic fluid, associated with internal leakage of the hydraulic components, make these systems low energy efficient. In order to improve their energy efficiency, digital hydraulics emerges as a promising solution mainly for mobile applications. In this paper a hydraulic positioning system for aircraft control surfaces using a multi-chamber actuator controlled by on/off valves and a digital pump is proposed. The use of a digital pump with three fixed displacement pumps can provide eight different volumetric displacement outputs. The multi-chamber actuator with four areas can operate in two different modes, normal or regenerative, resulting in six different equivalent areas. The regenerative mode allows the actuator to achieve higher actuation velocity values with smaller pumps. These equivalent areas combined with the different supplied flow rates can deliver 43 different discrete output velocity values for the actuator, in steady-state. For the system dynamic analyses, three mathematical simulation models were developed using MATLAB/Simulink and Hopsan, one for the digital system, and two for the conventional solutions applied in aircraft (Servo Hydraulic Actuators (SHA) and Electro Hydrostatic Actuator (EHA)). The simulation results demonstrate that the digital actuator can achieve, for position control, a maximum position error, in a steady-state, of 0.7 mm. From the energy consumption point of view, the digital circuit consumes 31 times less energy when compared with the SHA and 1.7 when compared to the EHA, resulting in an energy efficiency of 54%.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-Chamber Actuator Using Digital Pump for Position and Velocity Control Applied in Aircraft\",\"authors\":\"M. P. Nostrani, Henrique Raduenz, A. Dell’Amico, Anders Petter Krus, V. Negri\",\"doi\":\"10.13052/ijfp1439-9776.2411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multi-chamber hydraulic actuator controlled by digital pumps and on/off valves, in order to improve the efficiency of hydraulic systems applied in aircraft for flight control. Hydraulic positioning systems are used in many different applications, such as mobile machinery, industry and aerospace. In aircraft, the hydraulic actuators are used at flight control surfaces, cargo doors, steering, landing gear and so one. However, the massive use of resistive control techniques, which throttles the passages of the hydraulic fluid, associated with internal leakage of the hydraulic components, make these systems low energy efficient. In order to improve their energy efficiency, digital hydraulics emerges as a promising solution mainly for mobile applications. In this paper a hydraulic positioning system for aircraft control surfaces using a multi-chamber actuator controlled by on/off valves and a digital pump is proposed. The use of a digital pump with three fixed displacement pumps can provide eight different volumetric displacement outputs. The multi-chamber actuator with four areas can operate in two different modes, normal or regenerative, resulting in six different equivalent areas. The regenerative mode allows the actuator to achieve higher actuation velocity values with smaller pumps. These equivalent areas combined with the different supplied flow rates can deliver 43 different discrete output velocity values for the actuator, in steady-state. For the system dynamic analyses, three mathematical simulation models were developed using MATLAB/Simulink and Hopsan, one for the digital system, and two for the conventional solutions applied in aircraft (Servo Hydraulic Actuators (SHA) and Electro Hydrostatic Actuator (EHA)). The simulation results demonstrate that the digital actuator can achieve, for position control, a maximum position error, in a steady-state, of 0.7 mm. From the energy consumption point of view, the digital circuit consumes 31 times less energy when compared with the SHA and 1.7 when compared to the EHA, resulting in an energy efficiency of 54%.\",\"PeriodicalId\":13977,\"journal\":{\"name\":\"International Journal of Fluid Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fluid Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ijfp1439-9776.2411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ijfp1439-9776.2411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种由数字泵和开关阀控制的多腔液压执行器,以提高飞机飞行控制液压系统的效率。液压定位系统用于许多不同的应用,如移动机械、工业和航空航天。在飞机上,液压致动器用于飞行控制表面、货舱门、转向、起落架等。然而,与液压部件的内部泄漏相关的阻力控制技术的大量使用使液压流体的通道节流,使得这些系统的能效较低。为了提高其能源效率,数字液压系统成为一种很有前途的解决方案,主要用于移动应用。本文提出了一种用于飞机控制面的液压定位系统,该系统使用由开关阀和数字泵控制的多腔致动器。使用具有三个固定排量泵的数字泵可以提供八种不同的容积排量输出。具有四个区域的多腔执行器可以在两种不同模式下运行,即正常模式或再生模式,从而产生六个不同的等效区域。再生模式允许致动器用较小的泵实现更高的致动速度值。这些等效面积与不同的供应流速相结合,可以在稳态下为致动器提供43个不同的离散输出速度值。对于系统动力学分析,使用MATLAB/Simulink和Hopsan开发了三个数学仿真模型,一个用于数字系统,两个用于飞机上应用的传统解决方案(伺服液压执行器(SHA)和电液静压执行器(EHA))。仿真结果表明,对于位置控制,数字执行器可以在稳态下实现0.7mm的最大位置误差。从能耗的角度来看,数字电路与SHA相比能耗低31倍,与EHA相比能耗低1.7倍,能效为54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Chamber Actuator Using Digital Pump for Position and Velocity Control Applied in Aircraft
This paper presents a multi-chamber hydraulic actuator controlled by digital pumps and on/off valves, in order to improve the efficiency of hydraulic systems applied in aircraft for flight control. Hydraulic positioning systems are used in many different applications, such as mobile machinery, industry and aerospace. In aircraft, the hydraulic actuators are used at flight control surfaces, cargo doors, steering, landing gear and so one. However, the massive use of resistive control techniques, which throttles the passages of the hydraulic fluid, associated with internal leakage of the hydraulic components, make these systems low energy efficient. In order to improve their energy efficiency, digital hydraulics emerges as a promising solution mainly for mobile applications. In this paper a hydraulic positioning system for aircraft control surfaces using a multi-chamber actuator controlled by on/off valves and a digital pump is proposed. The use of a digital pump with three fixed displacement pumps can provide eight different volumetric displacement outputs. The multi-chamber actuator with four areas can operate in two different modes, normal or regenerative, resulting in six different equivalent areas. The regenerative mode allows the actuator to achieve higher actuation velocity values with smaller pumps. These equivalent areas combined with the different supplied flow rates can deliver 43 different discrete output velocity values for the actuator, in steady-state. For the system dynamic analyses, three mathematical simulation models were developed using MATLAB/Simulink and Hopsan, one for the digital system, and two for the conventional solutions applied in aircraft (Servo Hydraulic Actuators (SHA) and Electro Hydrostatic Actuator (EHA)). The simulation results demonstrate that the digital actuator can achieve, for position control, a maximum position error, in a steady-state, of 0.7 mm. From the energy consumption point of view, the digital circuit consumes 31 times less energy when compared with the SHA and 1.7 when compared to the EHA, resulting in an energy efficiency of 54%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fluid Power
International Journal of Fluid Power ENGINEERING, MECHANICAL-
CiteScore
1.60
自引率
0.00%
发文量
16
期刊最新文献
A Review of Pilot-operated Hydraulic Valves – Development, Challenges, and a Comparative Study Facilitating Energy Monitoring and Fault Diagnosis of Pneumatic Cylinders with Exergy and Machine Learning Performance Analysis of a Pressurized Assembly with a Reinforced O-ring Hydrodynamic Analysis of Shallow Water Sloshing in Ship Chamber Under Longitudinal Earthquake Effect of Blowing Ratio on Turbine Blade Air Film Cooling Under Different Engine Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1