石墨烯纳米粒子聚乙烯醇在1.5微米光脉冲产生中的性能

IF 0.5 Q4 OPTICS Photonics Letters of Poland Pub Date : 2021-09-30 DOI:10.4302/PLP.V13I3.1113
N. Hussain, M. Salim, A. Azmi, M. Y. M. Noor, A. S. Abdullah, F. Ahmad, Ibrahim Mohd Haniff
{"title":"石墨烯纳米粒子聚乙烯醇在1.5微米光脉冲产生中的性能","authors":"N. Hussain, M. Salim, A. Azmi, M. Y. M. Noor, A. S. Abdullah, F. Ahmad, Ibrahim Mohd Haniff","doi":"10.4302/PLP.V13I3.1113","DOIUrl":null,"url":null,"abstract":"This paper explains about the performance of graphene nanopowder (GNP) based saturable absorber (SA) at 1.5-micron region which is prepared by dissolution in polyvinyl alcohol (PVA) polymer. Two different GNP flakes thickness (AO2-8 nm and AO4-60 nm) are tested. By applying a solution casting method, three weight ratio of GNP to PVA (12.04, 8.03 and 3.11 wt.%) have been prepared and fabricated as a composite thin film. To characterize for the SA performance, 4 mm2 area of GNP-PVA thin film is embedded in a 14 meters long ring cavity with 3 meters Erbium doped fiber (EDF) as a gain medium. Our characterization results show that the GNP-PVA thin film act as a Q-switcher which produce stable laser pulses for 12.04 wt.% with maximum repetition rate of 39.22 kHz and shortest pulse width of 11.79 µs. Meanwhile, unstable Q-switched pulses of 8.03 wt.% and 3.11 wt.% have been observed with recorded signal to noise ratio (SNR) of only 21 dB and 17 dB, respectively. The threshold pumping power for Q-switched lasing to emerge is recorded as low as 30 mW. Apparently, it shows that GNP concentration and flakes thickness in fabricated SA composite plays vital role in the performance of generated Q-switch laser, particularly at 1.5 µm region. Full Text: PDF ReferencesT. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, \"Nanotube–Polymer Composites for Ultrafast Photonics\", Adv. Mater. 21, 3874 (2009). CrossRef Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, \"Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers\", Adv. Funct. Mater. 19, 3077 (2009). CrossRef Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, Opt. Lett. 35(21), 3709 (2010). CrossRef D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A.C. Ferrari, \"Graphene Q-switched, tunable fiber laser\", Appl. Phys. Lett. 98, 3106 (2011). CrossRef Y.M. Chang, H. Kim, J.H. Lee, Y. Song, \"Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers\", Appl. Phys. Lett. 97, 211102 (2010). CrossRef M. Jiang, Z. Ren, Y. Zhang, B. Lu, R. Zhang, J. Guo, Y. Zhou, J. Bai, \"Passive Q-Switching with Graphene Saturable Absorber in Nd:YAG Operating at 1064nm\", Mater. Sci. Forum 694, 700 (2011). CrossRef N. Hussin, M.H. Ibrahim, F. Ahmad, H. Yahaya, S.W. Harun, \"Graphene Nanoplatelets (GnP)-PVA Based Passive Saturable Absorber\", Telkomnika 15(2), 814 (2017). CrossRef F.C. Mat, M. Yasin, A.A. Latiff, S.W. Harun, Photonics Letters of Poland 9, 100 (2017). CrossRef E.K. Ng, K.Y. Lau, H.K. Lee, N.M. Yusoff, A.R. Sarmani, M.F. Omar, M.A. Mahdi, \"L-band femtosecond fiber laser based on a reduced graphene oxide polymer composite saturable absorber\", Opt. Mater. Express 11, 59 (2021). CrossRef N.H.M. Apandi, S.N.F. Zuikafly, N. Kasim, M.A. Mohamed, S.W. Harun, F. Ahmad, \"Observation of dark and bright pulses in q-switched erbium doped fiber laser using graphene nano-platelets as saturable absorber\", Bull. Electr. Eng. Inform. 8, 1358 (2019). CrossRef N.U.H.H.B. Zalkepali, N.A. Awang, Y.R. Yuzaile, Z. Zakaria, A.A. Latif and F. Ahmad, \"Graphene Nanoplatelets as Saturable Absorber for Mode-locked Fiber Laser Generation\", J. Adv. Res. Dyn. Control Syst. 12(2), 602 (2020). CrossRef X. Zhu and S. Chen, \"Autoencoder-Based Transceiver Design for OWC Systems in Log-Normal Fading Channel\", IEEE Photonics J. 11, 7105109 (2019). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance of Graphene Nanopowder-Polyvinyl Alcohol in Optical Pulse Generation at 1.5 Micron Region\",\"authors\":\"N. Hussain, M. Salim, A. Azmi, M. Y. M. Noor, A. S. Abdullah, F. Ahmad, Ibrahim Mohd Haniff\",\"doi\":\"10.4302/PLP.V13I3.1113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explains about the performance of graphene nanopowder (GNP) based saturable absorber (SA) at 1.5-micron region which is prepared by dissolution in polyvinyl alcohol (PVA) polymer. Two different GNP flakes thickness (AO2-8 nm and AO4-60 nm) are tested. By applying a solution casting method, three weight ratio of GNP to PVA (12.04, 8.03 and 3.11 wt.%) have been prepared and fabricated as a composite thin film. To characterize for the SA performance, 4 mm2 area of GNP-PVA thin film is embedded in a 14 meters long ring cavity with 3 meters Erbium doped fiber (EDF) as a gain medium. Our characterization results show that the GNP-PVA thin film act as a Q-switcher which produce stable laser pulses for 12.04 wt.% with maximum repetition rate of 39.22 kHz and shortest pulse width of 11.79 µs. Meanwhile, unstable Q-switched pulses of 8.03 wt.% and 3.11 wt.% have been observed with recorded signal to noise ratio (SNR) of only 21 dB and 17 dB, respectively. The threshold pumping power for Q-switched lasing to emerge is recorded as low as 30 mW. Apparently, it shows that GNP concentration and flakes thickness in fabricated SA composite plays vital role in the performance of generated Q-switch laser, particularly at 1.5 µm region. Full Text: PDF ReferencesT. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, \\\"Nanotube–Polymer Composites for Ultrafast Photonics\\\", Adv. Mater. 21, 3874 (2009). CrossRef Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, \\\"Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers\\\", Adv. Funct. Mater. 19, 3077 (2009). CrossRef Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, Opt. Lett. 35(21), 3709 (2010). CrossRef D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A.C. Ferrari, \\\"Graphene Q-switched, tunable fiber laser\\\", Appl. Phys. Lett. 98, 3106 (2011). CrossRef Y.M. Chang, H. Kim, J.H. Lee, Y. Song, \\\"Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers\\\", Appl. Phys. Lett. 97, 211102 (2010). CrossRef M. Jiang, Z. Ren, Y. Zhang, B. Lu, R. Zhang, J. Guo, Y. Zhou, J. Bai, \\\"Passive Q-Switching with Graphene Saturable Absorber in Nd:YAG Operating at 1064nm\\\", Mater. Sci. Forum 694, 700 (2011). CrossRef N. Hussin, M.H. Ibrahim, F. Ahmad, H. Yahaya, S.W. Harun, \\\"Graphene Nanoplatelets (GnP)-PVA Based Passive Saturable Absorber\\\", Telkomnika 15(2), 814 (2017). CrossRef F.C. Mat, M. Yasin, A.A. Latiff, S.W. Harun, Photonics Letters of Poland 9, 100 (2017). CrossRef E.K. Ng, K.Y. Lau, H.K. Lee, N.M. Yusoff, A.R. Sarmani, M.F. Omar, M.A. Mahdi, \\\"L-band femtosecond fiber laser based on a reduced graphene oxide polymer composite saturable absorber\\\", Opt. Mater. Express 11, 59 (2021). CrossRef N.H.M. Apandi, S.N.F. Zuikafly, N. Kasim, M.A. Mohamed, S.W. Harun, F. Ahmad, \\\"Observation of dark and bright pulses in q-switched erbium doped fiber laser using graphene nano-platelets as saturable absorber\\\", Bull. Electr. Eng. Inform. 8, 1358 (2019). CrossRef N.U.H.H.B. Zalkepali, N.A. Awang, Y.R. Yuzaile, Z. Zakaria, A.A. Latif and F. Ahmad, \\\"Graphene Nanoplatelets as Saturable Absorber for Mode-locked Fiber Laser Generation\\\", J. Adv. Res. Dyn. Control Syst. 12(2), 602 (2020). CrossRef X. Zhu and S. Chen, \\\"Autoencoder-Based Transceiver Design for OWC Systems in Log-Normal Fading Channel\\\", IEEE Photonics J. 11, 7105109 (2019). CrossRef\",\"PeriodicalId\":20055,\"journal\":{\"name\":\"Photonics Letters of Poland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Letters of Poland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4302/PLP.V13I3.1113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/PLP.V13I3.1113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了石墨烯纳米粉(GNP)基可饱和吸收体(SA)在聚乙烯醇(PVA)聚合物中溶解制备的1.5微米区域的性能。测试了两种不同的GNP薄片厚度(AO2-8nm和AO4-60nm)。采用溶液浇铸法,制备了GNP与PVA三种重量比(12.04、8.03和3.11wt%)的复合薄膜。为了表征SA性能,将4mm2面积的GNP-PVA薄膜嵌入14米长的环形腔中,其中3米掺铒光纤(EDF)作为增益介质。我们的表征结果表明,GNP-PVA薄膜可以作为Q开关,产生12.04wt.%的稳定激光脉冲,最大重复频率为39.22kHz,最短脉冲宽度为11.79µs。同时,观察到8.03wt.%和3.11wt.%的不稳定Q开关脉冲,记录的信噪比(SNR)分别仅为21dB和17dB。Q开关激光产生的阈值泵浦功率低至30mW。显然,这表明所制备的SA复合材料中的GNP浓度和薄片厚度对所产生的Q开关激光器的性能起着至关重要的作用,特别是在1.5µm区域。全文:PDF参考文献。Hasan,Z.Sun,F.Wang,F.Bonaccorso,P.H.Tan,A.G.Rozhin,A.C.Ferrari,“用于超快光子的纳米管-聚合物复合材料”,高级材料。213874(2009)。交叉参考鲍,张,王,倪,严,沈,罗,唐,“原子层石墨烯作为超快脉冲激光器的饱和吸收体”,高级功能。Mater。193077(2009)。交叉参考:罗,周,翁,黄,许,叶,蔡,选择。Lett。35(21),3709(2010)。CrossRef D.Popa,Z.Sun,T.Hasan,F.Torrisi,F.Wang,A.C.Ferrari,“石墨烯调Q可调谐光纤激光器”,Appl。Phys。Lett。983106(2011)。CrossRef Y.M.Chang,H.Kim,J.H.Lee,Y.Song,“通过机械剥离有效形成的多层石墨烯,用于光纤锁模激光器中的非线性可饱和吸收体”,Appl。Phys。Lett。9721102(2010)。江,任,张,陆,张,郭,周,白,“1064nm工作Nd:YAG中石墨烯饱和吸收体的被动调Q”,材料。科学。论坛694700(2011年)。CrossRef N.Hussin,M.H.Ibrahim,F.Ahmad,H.Yahaya,S.W.Harun,“石墨烯纳米板(GnP)-PVA基被动饱和吸收体”,Telkomnika 15(2),814(2017)。CrossRef F.C.Mat、M.Yasin、A.A.Latiff、S.W.Harun,《波兰光子通讯》,第9期,第100页(2017年)。CrossRef E.K.Ng,K.Y.Lau,H.K.Lee,N.M.Yusoff,A.R.Sarmani,M.F.Omar,M.A.Mahdi,“基于还原氧化石墨烯-聚合物复合饱和吸收体的L波段飞秒光纤激光器”,Opt。Mater。Express 11,59(2021)。CrossRef N.H.M.Apandi,S.N.F.Zuikafly,N.Kasim,M.A.Mohamed,S.W.Harun,F.Ahmad,“使用石墨烯纳米片作为可饱和吸收体在调q掺铒光纤激光器中观察暗脉冲和亮脉冲”,Bull。Elect。工程师通知。81358(2019)。CrossRef N.U.H.B.Zalkepali,N.A.Awang,Y.R.Yuzaile,Z.Zakaria,A.A.Latif和F.Ahmad,“石墨烯纳米板作为锁模光纤激光产生的可饱和吸收体”,J.Adv.Res.Dyn。控制系统。12(2),602(2020)。CrossRef X.Zhu和S.Chen,“对数正态衰落信道下基于自动编码器的OWC系统收发器设计”,IEEE Photonics J.117105109(2019)。CrossRef
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of Graphene Nanopowder-Polyvinyl Alcohol in Optical Pulse Generation at 1.5 Micron Region
This paper explains about the performance of graphene nanopowder (GNP) based saturable absorber (SA) at 1.5-micron region which is prepared by dissolution in polyvinyl alcohol (PVA) polymer. Two different GNP flakes thickness (AO2-8 nm and AO4-60 nm) are tested. By applying a solution casting method, three weight ratio of GNP to PVA (12.04, 8.03 and 3.11 wt.%) have been prepared and fabricated as a composite thin film. To characterize for the SA performance, 4 mm2 area of GNP-PVA thin film is embedded in a 14 meters long ring cavity with 3 meters Erbium doped fiber (EDF) as a gain medium. Our characterization results show that the GNP-PVA thin film act as a Q-switcher which produce stable laser pulses for 12.04 wt.% with maximum repetition rate of 39.22 kHz and shortest pulse width of 11.79 µs. Meanwhile, unstable Q-switched pulses of 8.03 wt.% and 3.11 wt.% have been observed with recorded signal to noise ratio (SNR) of only 21 dB and 17 dB, respectively. The threshold pumping power for Q-switched lasing to emerge is recorded as low as 30 mW. Apparently, it shows that GNP concentration and flakes thickness in fabricated SA composite plays vital role in the performance of generated Q-switch laser, particularly at 1.5 µm region. Full Text: PDF ReferencesT. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, "Nanotube–Polymer Composites for Ultrafast Photonics", Adv. Mater. 21, 3874 (2009). CrossRef Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, "Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers", Adv. Funct. Mater. 19, 3077 (2009). CrossRef Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, Opt. Lett. 35(21), 3709 (2010). CrossRef D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A.C. Ferrari, "Graphene Q-switched, tunable fiber laser", Appl. Phys. Lett. 98, 3106 (2011). CrossRef Y.M. Chang, H. Kim, J.H. Lee, Y. Song, "Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers", Appl. Phys. Lett. 97, 211102 (2010). CrossRef M. Jiang, Z. Ren, Y. Zhang, B. Lu, R. Zhang, J. Guo, Y. Zhou, J. Bai, "Passive Q-Switching with Graphene Saturable Absorber in Nd:YAG Operating at 1064nm", Mater. Sci. Forum 694, 700 (2011). CrossRef N. Hussin, M.H. Ibrahim, F. Ahmad, H. Yahaya, S.W. Harun, "Graphene Nanoplatelets (GnP)-PVA Based Passive Saturable Absorber", Telkomnika 15(2), 814 (2017). CrossRef F.C. Mat, M. Yasin, A.A. Latiff, S.W. Harun, Photonics Letters of Poland 9, 100 (2017). CrossRef E.K. Ng, K.Y. Lau, H.K. Lee, N.M. Yusoff, A.R. Sarmani, M.F. Omar, M.A. Mahdi, "L-band femtosecond fiber laser based on a reduced graphene oxide polymer composite saturable absorber", Opt. Mater. Express 11, 59 (2021). CrossRef N.H.M. Apandi, S.N.F. Zuikafly, N. Kasim, M.A. Mohamed, S.W. Harun, F. Ahmad, "Observation of dark and bright pulses in q-switched erbium doped fiber laser using graphene nano-platelets as saturable absorber", Bull. Electr. Eng. Inform. 8, 1358 (2019). CrossRef N.U.H.H.B. Zalkepali, N.A. Awang, Y.R. Yuzaile, Z. Zakaria, A.A. Latif and F. Ahmad, "Graphene Nanoplatelets as Saturable Absorber for Mode-locked Fiber Laser Generation", J. Adv. Res. Dyn. Control Syst. 12(2), 602 (2020). CrossRef X. Zhu and S. Chen, "Autoencoder-Based Transceiver Design for OWC Systems in Log-Normal Fading Channel", IEEE Photonics J. 11, 7105109 (2019). CrossRef
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
24
期刊最新文献
Making use of Digital Image Correlation to identify the true character of the applied load Technological challenges in the development of silica-titania platform for integrated optics Modelling of Germanium-Based Perovskite Solar Cell for Different Hole Transport Materials and Defect Density Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries Focusing properties of Azimuthally Polarized Lorentz Gauss Vortex Beam through a Dielectric Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1