一种用于准全向无线功率传输的新型弯曲线圈发射机

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of electromagnetic engineering and science Pub Date : 2023-03-31 DOI:10.26866/jees.2023.2.r.154
Bochao Guo, Yubo Zhao, Wei Chen, Ni Guo, Zijian Tian
{"title":"一种用于准全向无线功率传输的新型弯曲线圈发射机","authors":"Bochao Guo, Yubo Zhao, Wei Chen, Ni Guo, Zijian Tian","doi":"10.26866/jees.2023.2.r.154","DOIUrl":null,"url":null,"abstract":"Achieving stable power transfer by merely relying on quasi-omnidirectional couplers is challenging. In this paper, we propose a quasi-omnidirectional wireless power transfer (QWPT) system with a novel curved-coil transmitter to achieve steady transmission performance. A single power source is used to drive the transmitter's current without using a phase and current control methodology. Power is transmitted to the receiver through magnetic resonant coupling at a distance of 50 mm. Moreover, an equivalent circuit model of the curved-coil system is derived and mathematically analyzed. The mutual inductance of the proposed QWPT system is evaluated through analysis and experiments. The experimental results for the resonant coupling system confirm the theoretical analysis of the performance of the curved-coil transmitter and quasi-omnidirectional power transfer.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Curved-Coil Transmitter for Quasi-omnidirectional Wireless Power Transfer\",\"authors\":\"Bochao Guo, Yubo Zhao, Wei Chen, Ni Guo, Zijian Tian\",\"doi\":\"10.26866/jees.2023.2.r.154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving stable power transfer by merely relying on quasi-omnidirectional couplers is challenging. In this paper, we propose a quasi-omnidirectional wireless power transfer (QWPT) system with a novel curved-coil transmitter to achieve steady transmission performance. A single power source is used to drive the transmitter's current without using a phase and current control methodology. Power is transmitted to the receiver through magnetic resonant coupling at a distance of 50 mm. Moreover, an equivalent circuit model of the curved-coil system is derived and mathematically analyzed. The mutual inductance of the proposed QWPT system is evaluated through analysis and experiments. The experimental results for the resonant coupling system confirm the theoretical analysis of the performance of the curved-coil transmitter and quasi-omnidirectional power transfer.\",\"PeriodicalId\":15662,\"journal\":{\"name\":\"Journal of electromagnetic engineering and science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electromagnetic engineering and science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26866/jees.2023.2.r.154\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.2.r.154","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

仅依靠准全向耦合器实现稳定的功率传输是具有挑战性的。在本文中,我们提出了一种准全向无线电力传输(QWPT)系统,该系统采用一种新颖的弯曲线圈发射机来实现稳定的传输性能。一个单一的电源被用来驱动发射机的电流,而不使用相位和电流控制方法。功率在50mm的距离上通过磁谐振耦合传输到接收器。推导了弯曲线圈系统的等效电路模型,并进行了数学分析。通过分析和实验对所提出的QWPT系统的互感进行了评价。谐振耦合系统的实验结果证实了曲线线圈发射机和准全向功率传输性能的理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Curved-Coil Transmitter for Quasi-omnidirectional Wireless Power Transfer
Achieving stable power transfer by merely relying on quasi-omnidirectional couplers is challenging. In this paper, we propose a quasi-omnidirectional wireless power transfer (QWPT) system with a novel curved-coil transmitter to achieve steady transmission performance. A single power source is used to drive the transmitter's current without using a phase and current control methodology. Power is transmitted to the receiver through magnetic resonant coupling at a distance of 50 mm. Moreover, an equivalent circuit model of the curved-coil system is derived and mathematically analyzed. The mutual inductance of the proposed QWPT system is evaluated through analysis and experiments. The experimental results for the resonant coupling system confirm the theoretical analysis of the performance of the curved-coil transmitter and quasi-omnidirectional power transfer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
期刊最新文献
Efficient FDTD Simulation for the EM Analysis of Faraday Rotation in the Ionosphere Experimental Results of Magnetic Communication Using the Giant Magnetoimpedance Receiver in Underwater Environments A Separation Method for Electromagnetic Radiation Sources of the Same Frequency Investigation of Pulse Characteristics of a Novel Cylindrically Slotted Cloaked Antenna Time-Domain Measurement Data Accumulation for Slow Moving Point Target Detection in Heavily Cluttered Environments Using CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1