{"title":"基于数值和实验分析的电气化铁路双受电弓架空接触线稳定臂阻尼器研制","authors":"Wenping Chu, Yang Song, Fuchuan Duan, Zhigang Liu","doi":"10.1049/els2.12024","DOIUrl":null,"url":null,"abstract":"<p>To improve the carrying capacity, double pantographs are normally used to collect the electric current from the catenary. The mechanical wave excited by the leading pantograph affects the contact of the trailing pantograph and the contact wire, which usually deteriorates the current collection quality. To address this issue, a steady arm damper is developed in this work to reduce the wave intensity caused by the leading pantograph. The catenary is modelled by Absolute Nodal Coordinate Formulation. The numerical simulations indicate that the steady arm damper with certain values reduces the contact force variation of the trailing pantograph. But overlarge damping may behave as a hard spot and aggravates the interaction performance. The acceptable steady arm damping should be lower than 300 Ns/m. The optimal value of the steady arm damping coefficient varies with the train speed. The realistic damping ratio should be determined based on the operating speed of a railway line. Based on the simulation results, several realistic steady arm dampers are developed, which are placed between the cantilever and the end of the steady arm. An experimental test is conducted to investigate the effect of the steady arm damper on the reduction of vibration caused by the dropping sinker. The experimental results demonstrate that the steady arm damper can reduce the mechanical wave amplitude and eliminate its effect on the trailing pantograph.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12024","citationCount":"3","resultStr":"{\"title\":\"Development of steady arm damper for electrified railway overhead contact line with double pantographs based on numerical and experimental analysis\",\"authors\":\"Wenping Chu, Yang Song, Fuchuan Duan, Zhigang Liu\",\"doi\":\"10.1049/els2.12024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To improve the carrying capacity, double pantographs are normally used to collect the electric current from the catenary. The mechanical wave excited by the leading pantograph affects the contact of the trailing pantograph and the contact wire, which usually deteriorates the current collection quality. To address this issue, a steady arm damper is developed in this work to reduce the wave intensity caused by the leading pantograph. The catenary is modelled by Absolute Nodal Coordinate Formulation. The numerical simulations indicate that the steady arm damper with certain values reduces the contact force variation of the trailing pantograph. But overlarge damping may behave as a hard spot and aggravates the interaction performance. The acceptable steady arm damping should be lower than 300 Ns/m. The optimal value of the steady arm damping coefficient varies with the train speed. The realistic damping ratio should be determined based on the operating speed of a railway line. Based on the simulation results, several realistic steady arm dampers are developed, which are placed between the cantilever and the end of the steady arm. An experimental test is conducted to investigate the effect of the steady arm damper on the reduction of vibration caused by the dropping sinker. The experimental results demonstrate that the steady arm damper can reduce the mechanical wave amplitude and eliminate its effect on the trailing pantograph.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12024\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/els2.12024\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/els2.12024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of steady arm damper for electrified railway overhead contact line with double pantographs based on numerical and experimental analysis
To improve the carrying capacity, double pantographs are normally used to collect the electric current from the catenary. The mechanical wave excited by the leading pantograph affects the contact of the trailing pantograph and the contact wire, which usually deteriorates the current collection quality. To address this issue, a steady arm damper is developed in this work to reduce the wave intensity caused by the leading pantograph. The catenary is modelled by Absolute Nodal Coordinate Formulation. The numerical simulations indicate that the steady arm damper with certain values reduces the contact force variation of the trailing pantograph. But overlarge damping may behave as a hard spot and aggravates the interaction performance. The acceptable steady arm damping should be lower than 300 Ns/m. The optimal value of the steady arm damping coefficient varies with the train speed. The realistic damping ratio should be determined based on the operating speed of a railway line. Based on the simulation results, several realistic steady arm dampers are developed, which are placed between the cantilever and the end of the steady arm. An experimental test is conducted to investigate the effect of the steady arm damper on the reduction of vibration caused by the dropping sinker. The experimental results demonstrate that the steady arm damper can reduce the mechanical wave amplitude and eliminate its effect on the trailing pantograph.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.