基于JAGS的贝叶斯潜类分析教程

Meng Qiu
{"title":"基于JAGS的贝叶斯潜类分析教程","authors":"Meng Qiu","doi":"10.35566/jbds/v2n2/qiu","DOIUrl":null,"url":null,"abstract":"This tutorial introduces readers to latent class analysis (LCA) as a model-based approach to understand the unobserved heterogeneity in a population. Given the growing popularity of LCA, we aim to equip readers with theoretical fundamentals as well as computational tools. We outline some potential pitfalls of LCA and suggest related solutions. Moreover, we demonstrate how to conduct frequentist and Bayesian LCA in R with real and simulated data. To ease learning, the analysis is broken down into a series of simple steps. Beyond the simple LCA, two extensions including mixed-model LCA and growth curve LCA are provided to aid readers’ transition to more advanced models. The complete R code and data set are provided. \n ","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Tutorial on Bayesian Latent Class Analysis Using JAGS\",\"authors\":\"Meng Qiu\",\"doi\":\"10.35566/jbds/v2n2/qiu\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This tutorial introduces readers to latent class analysis (LCA) as a model-based approach to understand the unobserved heterogeneity in a population. Given the growing popularity of LCA, we aim to equip readers with theoretical fundamentals as well as computational tools. We outline some potential pitfalls of LCA and suggest related solutions. Moreover, we demonstrate how to conduct frequentist and Bayesian LCA in R with real and simulated data. To ease learning, the analysis is broken down into a series of simple steps. Beyond the simple LCA, two extensions including mixed-model LCA and growth curve LCA are provided to aid readers’ transition to more advanced models. The complete R code and data set are provided. \\n \",\"PeriodicalId\":93575,\"journal\":{\"name\":\"Journal of behavioral data science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of behavioral data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35566/jbds/v2n2/qiu\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v2n2/qiu","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本教程向读者介绍潜在类分析(LCA)作为一种基于模型的方法来理解群体中未观察到的异质性。鉴于LCA的日益普及,我们的目标是为读者提供理论基础和计算工具。我们概述了LCA的一些潜在缺陷,并提出了相关的解决方案。此外,我们还演示了如何使用真实和模拟数据在R中进行频率分析和贝叶斯LCA。为了便于学习,分析被分解为一系列简单的步骤。除了简单的LCA之外,还提供了混合模型LCA和增长曲线LCA两种扩展,以帮助读者过渡到更高级的模型。提供了完整的R代码和数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Tutorial on Bayesian Latent Class Analysis Using JAGS
This tutorial introduces readers to latent class analysis (LCA) as a model-based approach to understand the unobserved heterogeneity in a population. Given the growing popularity of LCA, we aim to equip readers with theoretical fundamentals as well as computational tools. We outline some potential pitfalls of LCA and suggest related solutions. Moreover, we demonstrate how to conduct frequentist and Bayesian LCA in R with real and simulated data. To ease learning, the analysis is broken down into a series of simple steps. Beyond the simple LCA, two extensions including mixed-model LCA and growth curve LCA are provided to aid readers’ transition to more advanced models. The complete R code and data set are provided.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rephrasing the Lengthy and Involved Proof of Kristof’s Theorem: A Tutorial with Some New Findings Stability and Spread: Transition Metrics that are Robust to Time Interval Misspecification A Novel Approach for Identifying Unobserved Heterogeneity in Longitudinal Growth Trajectories Using Natural Cubic Smoothing Splines A Proof-of-Concept Study Demonstrating How FITBIR Datasets Can be Harmonized to Examine Posttraumatic Stress Disorder-Traumatic Brain Injury Associations Loss Aversion Distribution: The Science Behind Loss Aversion Exhibited by Sellers of Perishable Good
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1