基于点向互信息的图拉普拉斯正则化稀疏解混

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-10-21 DOI:10.36227/techrxiv.16831330.v1
Sefa Kucuk, S. E. Yuksel
{"title":"基于点向互信息的图拉普拉斯正则化稀疏解混","authors":"Sefa Kucuk, S. E. Yuksel","doi":"10.36227/techrxiv.16831330.v1","DOIUrl":null,"url":null,"abstract":"Sparse unmixing (SU) aims to express the observed image signatures as a linear combination of pure spectra known a priori and has become a very popular technique with promising results in analyzing hyperspectral images (HSIs) over the past ten years. In SU, utilizing the spatial–contextual information allows for more realistic abundance estimation. To make full use of the spatial–spectral information, in this letter, we propose a pointwise mutual information (PMI)-based graph Laplacian (GL) regularization for SU. Specifically, we construct the affinity matrices via PMI by modeling the association between neighboring image features through a statistical framework and then we use them in the GL regularizer. We also adopt a double reweighted $\\ell _{1}$ norm minimization scheme to promote the sparsity of fractional abundances. Experimental results on simulated and real datasets prove the effectiveness of the proposed method and its superiority over competing algorithms in the literature.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":" ","pages":"1-5"},"PeriodicalIF":4.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pointwise Mutual Information-Based Graph Laplacian Regularized Sparse Unmixing\",\"authors\":\"Sefa Kucuk, S. E. Yuksel\",\"doi\":\"10.36227/techrxiv.16831330.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse unmixing (SU) aims to express the observed image signatures as a linear combination of pure spectra known a priori and has become a very popular technique with promising results in analyzing hyperspectral images (HSIs) over the past ten years. In SU, utilizing the spatial–contextual information allows for more realistic abundance estimation. To make full use of the spatial–spectral information, in this letter, we propose a pointwise mutual information (PMI)-based graph Laplacian (GL) regularization for SU. Specifically, we construct the affinity matrices via PMI by modeling the association between neighboring image features through a statistical framework and then we use them in the GL regularizer. We also adopt a double reweighted $\\\\ell _{1}$ norm minimization scheme to promote the sparsity of fractional abundances. Experimental results on simulated and real datasets prove the effectiveness of the proposed method and its superiority over competing algorithms in the literature.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\" \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.36227/techrxiv.16831330.v1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36227/techrxiv.16831330.v1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

稀疏分解(SU)旨在将观测到的图像特征表示为先验已知的纯光谱的线性组合,在过去十年中,它已成为一种非常流行的技术,在分析高光谱图像(HSI)方面取得了有希望的结果。在SU中,利用空间-上下文信息可以进行更真实的丰度估计。为了充分利用空间-光谱信息,在这封信中,我们为SU提出了一种基于点互信息(PMI)的图拉普拉斯(GL)正则化。具体来说,我们通过统计框架对相邻图像特征之间的关联建模,通过PMI构建亲和矩阵,然后将其用于GL正则化子。我们还采用了一个双重加权$\ell_{1}$范数最小化方案来提高分数丰度的稀疏性。在模拟和真实数据集上的实验结果证明了该方法的有效性及其优于文献中的竞争算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pointwise Mutual Information-Based Graph Laplacian Regularized Sparse Unmixing
Sparse unmixing (SU) aims to express the observed image signatures as a linear combination of pure spectra known a priori and has become a very popular technique with promising results in analyzing hyperspectral images (HSIs) over the past ten years. In SU, utilizing the spatial–contextual information allows for more realistic abundance estimation. To make full use of the spatial–spectral information, in this letter, we propose a pointwise mutual information (PMI)-based graph Laplacian (GL) regularization for SU. Specifically, we construct the affinity matrices via PMI by modeling the association between neighboring image features through a statistical framework and then we use them in the GL regularizer. We also adopt a double reweighted $\ell _{1}$ norm minimization scheme to promote the sparsity of fractional abundances. Experimental results on simulated and real datasets prove the effectiveness of the proposed method and its superiority over competing algorithms in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
A “Difference In Difference” based method for unsupervised change detection in season-varying images AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed Monitoring ten insect pests in selected orchards in three Azorean Islands: The project CUARENTAGRI. Maritime Radar Target Detection in Sea Clutter Based on CNN With Dual-Perspective Attention A Semantics-Geometry Framework for Road Extraction From Remote Sensing Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1