{"title":"基于主成分分析的社交媒体共享鲁棒视频隐写","authors":"Pingan Fan, Hong Zhang, Xianfeng Zhao","doi":"10.21203/rs.3.rs-1109366/v1","DOIUrl":null,"url":null,"abstract":"Most social media channels are lossy where videos are transcoded to reduce transmission bandwidth or storage space, such as social networking sites and video sharing platforms. Video transcoding makes most video steganographic schemes unusable for hidden communication based on social media. This paper proposes robust video steganography against video transcoding to construct reliable hidden communication on social media channels. A new strategy based on principal component analysis is provided to select robust embedding regions. Besides, side information is generated to label these selected regions. Side information compression is designed to reduce the transmission bandwidth cost. Then, one luminance component and one chrominance component are joined to embed secret messages and side information, notifying the receiver of correct extraction positions. Video preprocessing is conducted to improve the applicability of our proposed method to various video transcoding mechanisms. Experimental results have shown that our proposed method provides stronger robustness against video transcoding than other methods and achieves satisfactory security performance against steganalysis. Compared with some existing methods, our proposed method is more robust and reliable to realize hidden communication over social media channels, such as YouTube and Vimeo.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust video steganography for social media sharing based on principal component analysis\",\"authors\":\"Pingan Fan, Hong Zhang, Xianfeng Zhao\",\"doi\":\"10.21203/rs.3.rs-1109366/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most social media channels are lossy where videos are transcoded to reduce transmission bandwidth or storage space, such as social networking sites and video sharing platforms. Video transcoding makes most video steganographic schemes unusable for hidden communication based on social media. This paper proposes robust video steganography against video transcoding to construct reliable hidden communication on social media channels. A new strategy based on principal component analysis is provided to select robust embedding regions. Besides, side information is generated to label these selected regions. Side information compression is designed to reduce the transmission bandwidth cost. Then, one luminance component and one chrominance component are joined to embed secret messages and side information, notifying the receiver of correct extraction positions. Video preprocessing is conducted to improve the applicability of our proposed method to various video transcoding mechanisms. Experimental results have shown that our proposed method provides stronger robustness against video transcoding than other methods and achieves satisfactory security performance against steganalysis. Compared with some existing methods, our proposed method is more robust and reliable to realize hidden communication over social media channels, such as YouTube and Vimeo.\",\"PeriodicalId\":46070,\"journal\":{\"name\":\"EURASIP Journal on Information Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-1109366/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-1109366/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Robust video steganography for social media sharing based on principal component analysis
Most social media channels are lossy where videos are transcoded to reduce transmission bandwidth or storage space, such as social networking sites and video sharing platforms. Video transcoding makes most video steganographic schemes unusable for hidden communication based on social media. This paper proposes robust video steganography against video transcoding to construct reliable hidden communication on social media channels. A new strategy based on principal component analysis is provided to select robust embedding regions. Besides, side information is generated to label these selected regions. Side information compression is designed to reduce the transmission bandwidth cost. Then, one luminance component and one chrominance component are joined to embed secret messages and side information, notifying the receiver of correct extraction positions. Video preprocessing is conducted to improve the applicability of our proposed method to various video transcoding mechanisms. Experimental results have shown that our proposed method provides stronger robustness against video transcoding than other methods and achieves satisfactory security performance against steganalysis. Compared with some existing methods, our proposed method is more robust and reliable to realize hidden communication over social media channels, such as YouTube and Vimeo.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy