如何解释由算法构建的科学领域主题结构?入侵生物学研究专业基于引文的图谱研究

IF 4.1 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE Quantitative Science Studies Pub Date : 2022-11-01 DOI:10.1162/qss_a_00194
Matthias Held, T. Velden
{"title":"如何解释由算法构建的科学领域主题结构?入侵生物学研究专业基于引文的图谱研究","authors":"Matthias Held, T. Velden","doi":"10.1162/qss_a_00194","DOIUrl":null,"url":null,"abstract":"Abstract Often, bibliometric mapping studies remain at a very abstract level when assessing the validity or accuracy of the generated maps. In this case study of citation-based mappings of a research specialty, we dig deeper into the topical structures generated by the chosen mapping approaches and examine their correspondence to a sociologically informed understanding of the research specialty in question. Starting from a lexically delineated bibliometric field data set, we create an internal map of invasion biology by clustering the direct citation network with the Leiden algorithm. We obtain a topic structure that seems largely ordered by the empirical objects studied (species and habitat). To complement this view, we generate an external map of invasion biology by projecting the field data set onto the global Centre for Science and Technology Studies (CWTS) field classification. To better understand the representation of invasion biology by this global map, we use a manually coded set of invasion biological publications and investigate their citation-based interlinking with the fields defined by the global field classification. Our analysis highlights the variety of types of topical relatedness and epistemic interdependency that citations can stand for. Unless we assume that invasion biology is unique in this regard, our analysis suggests that global algorithmic field classification approaches that use citation links indiscriminately may struggle to reconstruct research specialties.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"3 1","pages":"651-671"},"PeriodicalIF":4.1000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"How to interpret algorithmically constructed topical structures of scientific fields? A case study of citation-based mappings of the research specialty of invasion biology\",\"authors\":\"Matthias Held, T. Velden\",\"doi\":\"10.1162/qss_a_00194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Often, bibliometric mapping studies remain at a very abstract level when assessing the validity or accuracy of the generated maps. In this case study of citation-based mappings of a research specialty, we dig deeper into the topical structures generated by the chosen mapping approaches and examine their correspondence to a sociologically informed understanding of the research specialty in question. Starting from a lexically delineated bibliometric field data set, we create an internal map of invasion biology by clustering the direct citation network with the Leiden algorithm. We obtain a topic structure that seems largely ordered by the empirical objects studied (species and habitat). To complement this view, we generate an external map of invasion biology by projecting the field data set onto the global Centre for Science and Technology Studies (CWTS) field classification. To better understand the representation of invasion biology by this global map, we use a manually coded set of invasion biological publications and investigate their citation-based interlinking with the fields defined by the global field classification. Our analysis highlights the variety of types of topical relatedness and epistemic interdependency that citations can stand for. Unless we assume that invasion biology is unique in this regard, our analysis suggests that global algorithmic field classification approaches that use citation links indiscriminately may struggle to reconstruct research specialties.\",\"PeriodicalId\":34021,\"journal\":{\"name\":\"Quantitative Science Studies\",\"volume\":\"3 1\",\"pages\":\"651-671\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Science Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/qss_a_00194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Science Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/qss_a_00194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 3

摘要

通常,在评估生成的地图的有效性或准确性时,文献计量学制图研究仍然停留在非常抽象的水平。在这个研究专业的基于引用的映射的案例研究中,我们深入挖掘了由所选择的映射方法产生的主题结构,并检查了它们与所讨论的研究专业的社会学知识理解的对应关系。从词汇描述的文献计量领域数据集开始,我们使用Leiden算法对直接引用网络进行聚类,从而创建了入侵生物学的内部地图。我们得到了一个主题结构,它似乎在很大程度上是由研究的经验对象(物种和栖息地)排序的。为了补充这一观点,我们通过将野外数据集投射到全球科学技术研究中心(CWTS)的野外分类中,生成了入侵生物学的外部地图。为了更好地理解这张全球地图对入侵生物学的表示,我们使用了一组人工编码的入侵生物学出版物,并研究了它们与全球领域分类定义的领域之间基于引用的相互联系。我们的分析强调了引文可以代表的主题相关性和认知相互依赖性的各种类型。除非我们假设入侵生物学在这方面是独一无二的,否则我们的分析表明,不加区分地使用引文链接的全球算法领域分类方法可能难以重建研究专业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How to interpret algorithmically constructed topical structures of scientific fields? A case study of citation-based mappings of the research specialty of invasion biology
Abstract Often, bibliometric mapping studies remain at a very abstract level when assessing the validity or accuracy of the generated maps. In this case study of citation-based mappings of a research specialty, we dig deeper into the topical structures generated by the chosen mapping approaches and examine their correspondence to a sociologically informed understanding of the research specialty in question. Starting from a lexically delineated bibliometric field data set, we create an internal map of invasion biology by clustering the direct citation network with the Leiden algorithm. We obtain a topic structure that seems largely ordered by the empirical objects studied (species and habitat). To complement this view, we generate an external map of invasion biology by projecting the field data set onto the global Centre for Science and Technology Studies (CWTS) field classification. To better understand the representation of invasion biology by this global map, we use a manually coded set of invasion biological publications and investigate their citation-based interlinking with the fields defined by the global field classification. Our analysis highlights the variety of types of topical relatedness and epistemic interdependency that citations can stand for. Unless we assume that invasion biology is unique in this regard, our analysis suggests that global algorithmic field classification approaches that use citation links indiscriminately may struggle to reconstruct research specialties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantitative Science Studies
Quantitative Science Studies INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
12.10
自引率
12.50%
发文量
46
审稿时长
22 weeks
期刊介绍:
期刊最新文献
Technological Impact of Funded Research: A Case Study of Non-Patent References Socio-cultural factors and academic openness of world countries Scope and limitations of library metrics for the assessment of ebook usage: COUNTER R5 and link resolver The rise of responsible metrics as a professional reform movement: A collective action frames account New methodologies for the digital age? How methods (re-)organize research using social media data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1