基于物联网的高层建筑火灾实时预反应实验系统

IF 3 3区 农林科学 Q2 ECOLOGY Fire-Switzerland Pub Date : 2023-07-09 DOI:10.3390/fire6070271
Haoyou Zhao, Zhaoyang Yu, Jinpeng Zhu
{"title":"基于物联网的高层建筑火灾实时预反应实验系统","authors":"Haoyou Zhao, Zhaoyang Yu, Jinpeng Zhu","doi":"10.3390/fire6070271","DOIUrl":null,"url":null,"abstract":"The primary objective of the current fire protection system in high-rise buildings is to extinguish fires in close proximity to the detectors. However, in the event of rapidly spreading fires, it is more effective to limit the transmission of fire and smoke. This study aims to develop an IoT-based real-time pre-response system for high-rise building fires that is capable of limiting the spread of fire and smoke. The proposed system collects fire data from sensors and transmits them to a cloud computer for real-time analysis. Based on the analysis results, the cloud computer controls the actions of alarm devices, ventilation equipment, and fine water mist nozzles. The system can dynamically adjust the entire system’s behavior in real time by adopting pre-response measures to extinguish fires and limit the spread of fires and smoke. The system was tested on a simulation platform similar to actual high-rise buildings to evaluate its impact on fires and smoke. The results demonstrate the system’s effectiveness in extinguishing fires and suppressing the spread of fires and smoke.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Real-Time Pre-Response Experiment System for High-Rise Building Fires Based on the Internet of Things\",\"authors\":\"Haoyou Zhao, Zhaoyang Yu, Jinpeng Zhu\",\"doi\":\"10.3390/fire6070271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary objective of the current fire protection system in high-rise buildings is to extinguish fires in close proximity to the detectors. However, in the event of rapidly spreading fires, it is more effective to limit the transmission of fire and smoke. This study aims to develop an IoT-based real-time pre-response system for high-rise building fires that is capable of limiting the spread of fire and smoke. The proposed system collects fire data from sensors and transmits them to a cloud computer for real-time analysis. Based on the analysis results, the cloud computer controls the actions of alarm devices, ventilation equipment, and fine water mist nozzles. The system can dynamically adjust the entire system’s behavior in real time by adopting pre-response measures to extinguish fires and limit the spread of fires and smoke. The system was tested on a simulation platform similar to actual high-rise buildings to evaluate its impact on fires and smoke. The results demonstrate the system’s effectiveness in extinguishing fires and suppressing the spread of fires and smoke.\",\"PeriodicalId\":36395,\"journal\":{\"name\":\"Fire-Switzerland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire-Switzerland\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fire6070271\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire-Switzerland","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fire6070271","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前高层建筑消防系统的主要目标是扑灭探测器附近的火灾。然而,在火灾迅速蔓延的情况下,限制火灾和烟雾的传播更为有效。本研究旨在开发一种基于物联网的高层建筑火灾实时预响应系统,该系统能够限制火灾和烟雾的传播。所提出的系统从传感器收集火灾数据,并将其传输到云计算机进行实时分析。基于分析结果,云计算机控制报警装置、通风设备和细水雾喷嘴的动作。该系统可以通过采取预先响应措施来扑灭火灾并限制火灾和烟雾的传播,从而实时动态调整整个系统的行为。该系统在类似于实际高层建筑的模拟平台上进行了测试,以评估其对火灾和烟雾的影响。结果证明了该系统在灭火和抑制火灾和烟雾蔓延方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Real-Time Pre-Response Experiment System for High-Rise Building Fires Based on the Internet of Things
The primary objective of the current fire protection system in high-rise buildings is to extinguish fires in close proximity to the detectors. However, in the event of rapidly spreading fires, it is more effective to limit the transmission of fire and smoke. This study aims to develop an IoT-based real-time pre-response system for high-rise building fires that is capable of limiting the spread of fire and smoke. The proposed system collects fire data from sensors and transmits them to a cloud computer for real-time analysis. Based on the analysis results, the cloud computer controls the actions of alarm devices, ventilation equipment, and fine water mist nozzles. The system can dynamically adjust the entire system’s behavior in real time by adopting pre-response measures to extinguish fires and limit the spread of fires and smoke. The system was tested on a simulation platform similar to actual high-rise buildings to evaluate its impact on fires and smoke. The results demonstrate the system’s effectiveness in extinguishing fires and suppressing the spread of fires and smoke.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fire-Switzerland
Fire-Switzerland Multiple-
CiteScore
3.10
自引率
15.60%
发文量
182
审稿时长
11 weeks
期刊最新文献
Fire Risk of Polyethylene (PE)-Based Foam Blocks Used as Interior Building Materials and Fire Suppression through a Simple Surface Coating: Analysis of Vulnerability, Propagation, and Flame Retardancy Experimental Study on Combustion Behavior of U-Shaped Cables with Different Bending Forms and Angles Evaluation of Air Quality inside Self-Contained Breathing Apparatus Used by Firefighters Summer Compound Drought-Heat Extremes Amplify Fire-Weather Risk and Burned Area beyond Historical Thresholds in Chongqing Region, Subtropical China Identification Methodology for Chemical Warehouses Dealing with Flammable Substances Capable of Causing Firewater Pollution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1