{"title":"从组织到细胞类型再返回:组织结构的单细胞基因表达分析","authors":"Xi Chen, S. Teichmann, K. Meyer","doi":"10.1146/ANNUREV-BIODATASCI-080917-013452","DOIUrl":null,"url":null,"abstract":"With the recent transformative developments in single-cell genomics and, in particular, single-cell gene expression analysis, it is now possible to study tissues at the single-cell level, rather than having to rely on data from bulk measurements. Here we review the rapid developments in single-cell RNA sequencing (scRNA-seq) protocols that have the potential for unbiased identification and profiling of all cell types within a tissue or organism. In addition, novel approaches for spatial profiling of gene expression allow us to map individual cells and cell types back into the three-dimensional context of organs. The combination of in-depth single-cell and spatial gene expression data will reveal tissue architecture in unprecedented detail, generating a wealth of biological knowledge and a better understanding of many diseases.","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2018-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-BIODATASCI-080917-013452","citationCount":"77","resultStr":"{\"title\":\"From Tissues to Cell Types and Back: Single-Cell Gene Expression Analysis of Tissue Architecture\",\"authors\":\"Xi Chen, S. Teichmann, K. Meyer\",\"doi\":\"10.1146/ANNUREV-BIODATASCI-080917-013452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the recent transformative developments in single-cell genomics and, in particular, single-cell gene expression analysis, it is now possible to study tissues at the single-cell level, rather than having to rely on data from bulk measurements. Here we review the rapid developments in single-cell RNA sequencing (scRNA-seq) protocols that have the potential for unbiased identification and profiling of all cell types within a tissue or organism. In addition, novel approaches for spatial profiling of gene expression allow us to map individual cells and cell types back into the three-dimensional context of organs. The combination of in-depth single-cell and spatial gene expression data will reveal tissue architecture in unprecedented detail, generating a wealth of biological knowledge and a better understanding of many diseases.\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2018-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/ANNUREV-BIODATASCI-080917-013452\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV-BIODATASCI-080917-013452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREV-BIODATASCI-080917-013452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
From Tissues to Cell Types and Back: Single-Cell Gene Expression Analysis of Tissue Architecture
With the recent transformative developments in single-cell genomics and, in particular, single-cell gene expression analysis, it is now possible to study tissues at the single-cell level, rather than having to rely on data from bulk measurements. Here we review the rapid developments in single-cell RNA sequencing (scRNA-seq) protocols that have the potential for unbiased identification and profiling of all cell types within a tissue or organism. In addition, novel approaches for spatial profiling of gene expression allow us to map individual cells and cell types back into the three-dimensional context of organs. The combination of in-depth single-cell and spatial gene expression data will reveal tissue architecture in unprecedented detail, generating a wealth of biological knowledge and a better understanding of many diseases.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.