k-medoids簇上欧氏距离测度与Gower距离测度的比较分析

Agil Aditya, B. Sari, T. N. Padilah
{"title":"k-medoids簇上欧氏距离测度与Gower距离测度的比较分析","authors":"Agil Aditya, B. Sari, T. N. Padilah","doi":"10.14710/JTSISKOM.2020.13747","DOIUrl":null,"url":null,"abstract":"K-medoids is a clustering method that uses the distance method to find and classify data that have similarities and inequalities between data. This shows that the determination of the distance measurement method is important because it affects the performance of the k-medoids cluster results. From several studies, it is stated that the Euclidean and Gower methods can be used as measurement methods in clustering with numerical data. This study aims to compare the performance of the k-medoids clustering results on a numerical dataset using the Euclidean and Gower methods. The method used is the Knowledge Discovery in Database (KDD) method. In this study, seven numerical datasets were used and the evaluation of clustering results used silhouette, Dunn, and connectivity values. The Euclidean distance method is superior to the two values of silhouette evaluation and connectivity, it shows that Euclidean has a good data grouping structure, while the Gower is superior to the Dunn value, which shows that the Gower has good cluster separation compared to Euclidean. This study shows that the Euclidean method is superior to the Gower method in the application of the k-medoids algorithm with a numeric dataset.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"9 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison analysis of Euclidean and Gower distance measures on k-medoids cluster\",\"authors\":\"Agil Aditya, B. Sari, T. N. Padilah\",\"doi\":\"10.14710/JTSISKOM.2020.13747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"K-medoids is a clustering method that uses the distance method to find and classify data that have similarities and inequalities between data. This shows that the determination of the distance measurement method is important because it affects the performance of the k-medoids cluster results. From several studies, it is stated that the Euclidean and Gower methods can be used as measurement methods in clustering with numerical data. This study aims to compare the performance of the k-medoids clustering results on a numerical dataset using the Euclidean and Gower methods. The method used is the Knowledge Discovery in Database (KDD) method. In this study, seven numerical datasets were used and the evaluation of clustering results used silhouette, Dunn, and connectivity values. The Euclidean distance method is superior to the two values of silhouette evaluation and connectivity, it shows that Euclidean has a good data grouping structure, while the Gower is superior to the Dunn value, which shows that the Gower has good cluster separation compared to Euclidean. This study shows that the Euclidean method is superior to the Gower method in the application of the k-medoids algorithm with a numeric dataset.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\"9 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/JTSISKOM.2020.13747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.2020.13747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

K-medoids是一种聚类方法,它使用距离方法来发现和分类数据之间具有相似性和不对称性的数据。这表明距离测量方法的确定很重要,因为它会影响k- medioid聚类结果的性能。一些研究表明,欧几里得方法和高尔方法可以作为数值数据聚类的测量方法。本研究旨在比较欧几里得方法和高尔方法在数值数据集上k- medioids聚类结果的性能。使用的方法是数据库中的知识发现(KDD)方法。在本研究中,使用了7个数值数据集,并使用剪影值、Dunn值和连通性值对聚类结果进行了评估。欧几里得距离法优于轮廓评价和连通性两个值,说明欧几里得具有良好的数据分组结构,而高尔值优于邓恩值,说明高尔值相对于欧几里得具有良好的聚类分离性。研究表明,在数值数据集上应用k-medoids算法时,欧几里得方法优于高尔方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison analysis of Euclidean and Gower distance measures on k-medoids cluster
K-medoids is a clustering method that uses the distance method to find and classify data that have similarities and inequalities between data. This shows that the determination of the distance measurement method is important because it affects the performance of the k-medoids cluster results. From several studies, it is stated that the Euclidean and Gower methods can be used as measurement methods in clustering with numerical data. This study aims to compare the performance of the k-medoids clustering results on a numerical dataset using the Euclidean and Gower methods. The method used is the Knowledge Discovery in Database (KDD) method. In this study, seven numerical datasets were used and the evaluation of clustering results used silhouette, Dunn, and connectivity values. The Euclidean distance method is superior to the two values of silhouette evaluation and connectivity, it shows that Euclidean has a good data grouping structure, while the Gower is superior to the Dunn value, which shows that the Gower has good cluster separation compared to Euclidean. This study shows that the Euclidean method is superior to the Gower method in the application of the k-medoids algorithm with a numeric dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1