银杏内酯B Niosomal Composite Drug通过血脑屏障的摄取和转运机制

Juntong Zhou, Xiao Wu, Yuezhu Ma, Zhenpeng Wang, Qing Huo
{"title":"银杏内酯B Niosomal Composite Drug通过血脑屏障的摄取和转运机制","authors":"Juntong Zhou, Xiao Wu, Yuezhu Ma, Zhenpeng Wang, Qing Huo","doi":"10.1166/NNL.2020.3257","DOIUrl":null,"url":null,"abstract":"Cerebrovascular and functional neurological lesions are the major disorders threatening human health and quality of life. The presence of the blood-brain barrier seriously affects the distribution and efficacy of various drugs in the brain. Ginkgolide B (GB) and Puerarin (Pue) are active\n pharmaceutical ingredients for the treatment of Parkinson’s disease. Here, we have developed a novel strategy to construct a GB-Pue niosomal composite drug. The in vitro cytology study of the niosomal composite drug showed that 20 mmol/L glutamate resulted in a mortality of 50–60%\n in the SHSY-5Y cells, while 30 μmol/L niosomal composite drug resulted in a survival rate of 95.2% in the SHSY-5Y cells with a maximum uptake value of 3.5 μg/mg and a peak uptake time at 2 hr. The monolayer cells reached a maximum transepithelial/endothelial electrical\n resistance (TEER) value of 626 Ω*cm2 at 36 hr in culture, and the cellular integrity was negatively correlated with the amount of drug accumulated in the cells. The accumulated GB and Pue in cells reached 86.53% and 76.49%, respectively. The 30 μmol/L composite drug\n preparation provided a higher cell survival rate in the glutamate (Glu) injured cells compared to the single drug preparations. Therefore, the composite preparation of the two drugs generated a synergistic effect, meeting the requirement for a combined use. The cell transmembrane transport\n experiments demonstrated that the pharmaceutical preparations traversed the blood-brain barrier through the active transport of cells.","PeriodicalId":18871,"journal":{"name":"Nanoscience and Nanotechnology Letters","volume":"12 1","pages":"1345-1354"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uptake and Transport Mechanisms of Ginkgolide B Niosomal Composite Drug Through the Blood-Brain Barrier\",\"authors\":\"Juntong Zhou, Xiao Wu, Yuezhu Ma, Zhenpeng Wang, Qing Huo\",\"doi\":\"10.1166/NNL.2020.3257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cerebrovascular and functional neurological lesions are the major disorders threatening human health and quality of life. The presence of the blood-brain barrier seriously affects the distribution and efficacy of various drugs in the brain. Ginkgolide B (GB) and Puerarin (Pue) are active\\n pharmaceutical ingredients for the treatment of Parkinson’s disease. Here, we have developed a novel strategy to construct a GB-Pue niosomal composite drug. The in vitro cytology study of the niosomal composite drug showed that 20 mmol/L glutamate resulted in a mortality of 50–60%\\n in the SHSY-5Y cells, while 30 μmol/L niosomal composite drug resulted in a survival rate of 95.2% in the SHSY-5Y cells with a maximum uptake value of 3.5 μg/mg and a peak uptake time at 2 hr. The monolayer cells reached a maximum transepithelial/endothelial electrical\\n resistance (TEER) value of 626 Ω*cm2 at 36 hr in culture, and the cellular integrity was negatively correlated with the amount of drug accumulated in the cells. The accumulated GB and Pue in cells reached 86.53% and 76.49%, respectively. The 30 μmol/L composite drug\\n preparation provided a higher cell survival rate in the glutamate (Glu) injured cells compared to the single drug preparations. Therefore, the composite preparation of the two drugs generated a synergistic effect, meeting the requirement for a combined use. The cell transmembrane transport\\n experiments demonstrated that the pharmaceutical preparations traversed the blood-brain barrier through the active transport of cells.\",\"PeriodicalId\":18871,\"journal\":{\"name\":\"Nanoscience and Nanotechnology Letters\",\"volume\":\"12 1\",\"pages\":\"1345-1354\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/NNL.2020.3257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/NNL.2020.3257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑血管和功能性神经病变是威胁人类健康和生活质量的主要疾病。血脑屏障的存在严重影响了各种药物在脑内的分布和疗效。银杏内酯B (GB)和葛根素(Pue)是治疗帕金森病的有效药物成分。在这里,我们开发了一种新的策略来构建GB-Pue niosomal composite drug。体外细胞学研究表明,20 mmol/L谷氨酸可导致SHSY-5Y细胞的死亡率为50-60%,而30 μmol/L谷氨酸可使SHSY-5Y细胞的存活率达到95.2%,最大摄取值为3.5 μg/mg,峰值摄取时间为2 hr。单层细胞在培养36小时时经上皮/内皮电阻(TEER)最大值为626 Ω*cm2,细胞完整性与细胞内积累的药物量呈负相关。细胞中积累的GB和Pue分别达到86.53%和76.49%。30 μmol/L复合药物在谷氨酸损伤细胞中的存活率高于单一药物。因此,两种药物的复合制剂产生了协同作用,满足了联合使用的要求。细胞跨膜运输实验表明,药物制剂通过细胞的主动运输穿越血脑屏障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uptake and Transport Mechanisms of Ginkgolide B Niosomal Composite Drug Through the Blood-Brain Barrier
Cerebrovascular and functional neurological lesions are the major disorders threatening human health and quality of life. The presence of the blood-brain barrier seriously affects the distribution and efficacy of various drugs in the brain. Ginkgolide B (GB) and Puerarin (Pue) are active pharmaceutical ingredients for the treatment of Parkinson’s disease. Here, we have developed a novel strategy to construct a GB-Pue niosomal composite drug. The in vitro cytology study of the niosomal composite drug showed that 20 mmol/L glutamate resulted in a mortality of 50–60% in the SHSY-5Y cells, while 30 μmol/L niosomal composite drug resulted in a survival rate of 95.2% in the SHSY-5Y cells with a maximum uptake value of 3.5 μg/mg and a peak uptake time at 2 hr. The monolayer cells reached a maximum transepithelial/endothelial electrical resistance (TEER) value of 626 Ω*cm2 at 36 hr in culture, and the cellular integrity was negatively correlated with the amount of drug accumulated in the cells. The accumulated GB and Pue in cells reached 86.53% and 76.49%, respectively. The 30 μmol/L composite drug preparation provided a higher cell survival rate in the glutamate (Glu) injured cells compared to the single drug preparations. Therefore, the composite preparation of the two drugs generated a synergistic effect, meeting the requirement for a combined use. The cell transmembrane transport experiments demonstrated that the pharmaceutical preparations traversed the blood-brain barrier through the active transport of cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscience and Nanotechnology Letters
Nanoscience and Nanotechnology Letters Physical, Chemical & Earth Sciences-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
0.00%
发文量
0
审稿时长
2.6 months
期刊最新文献
Identification of Immune-Related Prognostic Biomarkers in Pancreatic Cancer Nanocomposite Detection of Elemental Impurities and Process Correlation Analysis of Ceftriaxone Sodium for Injection Astragalus Polysaccharide Nano-Liposomes Modulate the Inflammatory Response and Oxidative Stress in Stroke-Associated Pneumonia by Increasing OIP5-AS1 to Regulate the miR-128-3p/SIRT1 Pathway miR-199a-3p Inhibitor Delivered Through Nano-Drug Delivery Systems Suppresses Tumor Cell Survival and Metastasis Construction of Functional Renal Targeting Nano Drug Liposome and Its Effect on Lupus Nephritis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1