圆木材的边缘投影基准测量

IF 1.1 4区 农林科学 Q3 FORESTRY Forest Products Journal Pub Date : 2021-10-01 DOI:10.13073/fpj-d-21-00024
C. Keck, R. Schödel
{"title":"圆木材的边缘投影基准测量","authors":"C. Keck, R. Schödel","doi":"10.13073/fpj-d-21-00024","DOIUrl":null,"url":null,"abstract":"\n The metrological verification of log scanners requires logs with accurately known dimensions as test objects. The measurement of the lengths and diameters must be traceable back to the SI (International System of Units) unit of length. The results have to be reported with the corresponding measurement uncertainties. The uncertainties are required to be 5 to 10 times lower than the corresponding maximum permissible errors allowed for the log scanner under test. This article presents a procedure for the reference measurement of logs using an off-the-shelf fringe projection system along with uncertainty budgets for the measured dimensions. The length and diameters are determined from the highly resolved mesh obtained by fringe projection using techniques from computational geometry and coordinate metrology. Corrections are applied to the length and diameter values to remove the systematic effect caused by scattering of projected light below the partially transparent log surface. The influence of the fringe projection system on the measured dimensions is determined by measurements of calibrated artifacts, which also provide the traceability back to the SI unit of length. The measurement is illustrated by the example of a log with a length of 2 m and a diameter of 280 mm. The corresponding uncertainty budgets, confirmed by repeat measurements, result in expanded uncertainties (confidence interval 95%) of 6 mm and 0.13 mm for length and diameter, respectively. These low values qualify the fringe projection measurement along with accompanying evaluation procedure to provide logs as reference objects for the verification of log scanners.","PeriodicalId":12387,"journal":{"name":"Forest Products Journal","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reference Measurement of Roundwood by Fringe Projection\",\"authors\":\"C. Keck, R. Schödel\",\"doi\":\"10.13073/fpj-d-21-00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The metrological verification of log scanners requires logs with accurately known dimensions as test objects. The measurement of the lengths and diameters must be traceable back to the SI (International System of Units) unit of length. The results have to be reported with the corresponding measurement uncertainties. The uncertainties are required to be 5 to 10 times lower than the corresponding maximum permissible errors allowed for the log scanner under test. This article presents a procedure for the reference measurement of logs using an off-the-shelf fringe projection system along with uncertainty budgets for the measured dimensions. The length and diameters are determined from the highly resolved mesh obtained by fringe projection using techniques from computational geometry and coordinate metrology. Corrections are applied to the length and diameter values to remove the systematic effect caused by scattering of projected light below the partially transparent log surface. The influence of the fringe projection system on the measured dimensions is determined by measurements of calibrated artifacts, which also provide the traceability back to the SI unit of length. The measurement is illustrated by the example of a log with a length of 2 m and a diameter of 280 mm. The corresponding uncertainty budgets, confirmed by repeat measurements, result in expanded uncertainties (confidence interval 95%) of 6 mm and 0.13 mm for length and diameter, respectively. These low values qualify the fringe projection measurement along with accompanying evaluation procedure to provide logs as reference objects for the verification of log scanners.\",\"PeriodicalId\":12387,\"journal\":{\"name\":\"Forest Products Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Products Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13073/fpj-d-21-00024\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Products Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13073/fpj-d-21-00024","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 2

摘要

原木扫描仪的计量验证需要具有精确已知尺寸的原木作为测试对象。长度和直径的测量必须追溯到SI(国际单位制)长度单位。必须报告具有相应测量不确定性的结果。不确定度要求比被测测井扫描仪允许的相应最大允许误差低5到10倍。本文介绍了一种使用现成条纹投影系统对原木进行参考测量的程序,以及测量尺寸的不确定度预算。长度和直径由高分辨率网格确定,该网格通过使用计算几何和坐标计量技术的条纹投影获得。对长度和直径值进行校正,以消除部分透明原木表面下投影光散射引起的系统效应。条纹投影系统对测量尺寸的影响是通过校准伪影的测量来确定的,这也提供了返回SI长度单位的可追溯性。测量以长度为2 m、直径为280 mm的原木为例进行说明。通过重复测量确认的相应不确定度预算导致长度和直径的不确定度(置信区间95%)分别为6 mm和0.13 mm。这些低值符合条纹投影测量以及附带的评估程序的要求,以提供原木作为验证原木扫描仪的参考对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reference Measurement of Roundwood by Fringe Projection
The metrological verification of log scanners requires logs with accurately known dimensions as test objects. The measurement of the lengths and diameters must be traceable back to the SI (International System of Units) unit of length. The results have to be reported with the corresponding measurement uncertainties. The uncertainties are required to be 5 to 10 times lower than the corresponding maximum permissible errors allowed for the log scanner under test. This article presents a procedure for the reference measurement of logs using an off-the-shelf fringe projection system along with uncertainty budgets for the measured dimensions. The length and diameters are determined from the highly resolved mesh obtained by fringe projection using techniques from computational geometry and coordinate metrology. Corrections are applied to the length and diameter values to remove the systematic effect caused by scattering of projected light below the partially transparent log surface. The influence of the fringe projection system on the measured dimensions is determined by measurements of calibrated artifacts, which also provide the traceability back to the SI unit of length. The measurement is illustrated by the example of a log with a length of 2 m and a diameter of 280 mm. The corresponding uncertainty budgets, confirmed by repeat measurements, result in expanded uncertainties (confidence interval 95%) of 6 mm and 0.13 mm for length and diameter, respectively. These low values qualify the fringe projection measurement along with accompanying evaluation procedure to provide logs as reference objects for the verification of log scanners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forest Products Journal
Forest Products Journal 工程技术-材料科学:纸与木材
CiteScore
2.10
自引率
11.10%
发文量
30
审稿时长
6-12 weeks
期刊介绍: Forest Products Journal (FPJ) is the source of information for industry leaders, researchers, teachers, students, and everyone interested in today''s forest products industry. The Forest Products Journal is well respected for publishing high-quality peer-reviewed technical research findings at the applied or practical level that reflect the current state of wood science and technology. Articles suitable as Technical Notes are brief notes (generally 1,200 words or less) that describe new or improved equipment or techniques; report on findings produced as by-products of major studies; or outline progress to date on long-term projects.
期刊最新文献
Validating LORCAT, the Log Recovery Analysis Tool Chinese Consumers’ Attitudes Toward Certified Wood Products Design and Evaluation of a Shear Analogy Tool for Custom Cross-Laminated Timber (CLT) Panels Made from Various Wood Species Use and Future Development of Optical Measurement Technology in the Study of Wood Surface Roughness CiteSpace-Based Scientometric Analysis (2003 through 2022) Impact of Growth Characteristics on Properties of 2 by 8 Southern Yellow Pine Structural Lumber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1