Shaopeng Zhong, Ao Liu, Yu Jiang, Simon Hu, Feng Xiao, Hai-Jun Huang, Yan Song
{"title":"不同定价策略下共享自动驾驶汽车的能源和环境影响","authors":"Shaopeng Zhong, Ao Liu, Yu Jiang, Simon Hu, Feng Xiao, Hai-Jun Huang, Yan Song","doi":"10.1038/s42949-023-00092-2","DOIUrl":null,"url":null,"abstract":"The introduction of vehicle automation, shared mobility, and vehicle electrification will bring about changes in urban transportation, land use, energy, and the environment. The accurate estimation of these effects is therefore essential for sustainable urban development. However, existing research on estimating the energy and environmental effects of shared autonomous electric vehicles generally ignores the interaction between land-use and transportation systems. This study, therefore, analyzes the long-term effects of shared autonomous vehicles (SAVs) from the perspective of land use and transportation integration. Different SAV pricing scenarios are also developed to explore the optimal pricing strategy for low carbon–oriented SAVs. Moreover, the study has further assessed the effect of vehicle electrification on vehicle emissions and energy consumption. The results have shown a nonlinear relationship between SAV fares and their transportation, land-use, energy, and environmental effects. Under an appropriate pricing strategy, SAV deployment could reduce PM2.5 emission and energy consumption by 56–64% and 53–61%, respectively. With the further introduction of vehicle electrification, these can rise to 76% and 74%.","PeriodicalId":74322,"journal":{"name":"npj urban sustainability","volume":" ","pages":"1-10"},"PeriodicalIF":9.1000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42949-023-00092-2.pdf","citationCount":"3","resultStr":"{\"title\":\"Energy and environmental impacts of shared autonomous vehicles under different pricing strategies\",\"authors\":\"Shaopeng Zhong, Ao Liu, Yu Jiang, Simon Hu, Feng Xiao, Hai-Jun Huang, Yan Song\",\"doi\":\"10.1038/s42949-023-00092-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The introduction of vehicle automation, shared mobility, and vehicle electrification will bring about changes in urban transportation, land use, energy, and the environment. The accurate estimation of these effects is therefore essential for sustainable urban development. However, existing research on estimating the energy and environmental effects of shared autonomous electric vehicles generally ignores the interaction between land-use and transportation systems. This study, therefore, analyzes the long-term effects of shared autonomous vehicles (SAVs) from the perspective of land use and transportation integration. Different SAV pricing scenarios are also developed to explore the optimal pricing strategy for low carbon–oriented SAVs. Moreover, the study has further assessed the effect of vehicle electrification on vehicle emissions and energy consumption. The results have shown a nonlinear relationship between SAV fares and their transportation, land-use, energy, and environmental effects. Under an appropriate pricing strategy, SAV deployment could reduce PM2.5 emission and energy consumption by 56–64% and 53–61%, respectively. With the further introduction of vehicle electrification, these can rise to 76% and 74%.\",\"PeriodicalId\":74322,\"journal\":{\"name\":\"npj urban sustainability\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42949-023-00092-2.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj urban sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s42949-023-00092-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj urban sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s42949-023-00092-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Energy and environmental impacts of shared autonomous vehicles under different pricing strategies
The introduction of vehicle automation, shared mobility, and vehicle electrification will bring about changes in urban transportation, land use, energy, and the environment. The accurate estimation of these effects is therefore essential for sustainable urban development. However, existing research on estimating the energy and environmental effects of shared autonomous electric vehicles generally ignores the interaction between land-use and transportation systems. This study, therefore, analyzes the long-term effects of shared autonomous vehicles (SAVs) from the perspective of land use and transportation integration. Different SAV pricing scenarios are also developed to explore the optimal pricing strategy for low carbon–oriented SAVs. Moreover, the study has further assessed the effect of vehicle electrification on vehicle emissions and energy consumption. The results have shown a nonlinear relationship between SAV fares and their transportation, land-use, energy, and environmental effects. Under an appropriate pricing strategy, SAV deployment could reduce PM2.5 emission and energy consumption by 56–64% and 53–61%, respectively. With the further introduction of vehicle electrification, these can rise to 76% and 74%.