W. Steijn, C. van Gulijk, Dolf van der Beek, Teun Sluijs
{"title":"人机交互系统动力学模型;解决复杂相互作用的难题","authors":"W. Steijn, C. van Gulijk, Dolf van der Beek, Teun Sluijs","doi":"10.3390/safety9010001","DOIUrl":null,"url":null,"abstract":"Cooperative robots in the workspace have an effect on safety that is not yet fully understood. This work collates pre-existing knowledge on human, technological and organizational factors for human-robot interaction and develops a system dynamics model that captures the complex interactions. Expert consultation in the form of a Delphi study is used to derive a tractable model from pre-existing puzzle pieces. A final model is presented, which contains 10 nodes and 20 relationships containing the three key outcome factors of human-robot interaction, viz. Safety, Efficiency and Sustainability. By combining these factors into a single tractable framework, this model bridges the gap between individual efforts from previous works in the field of robotics.","PeriodicalId":36827,"journal":{"name":"Safety","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A System-Dynamic Model for Human–Robot Interaction; Solving the Puzzle of Complex Interactions\",\"authors\":\"W. Steijn, C. van Gulijk, Dolf van der Beek, Teun Sluijs\",\"doi\":\"10.3390/safety9010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooperative robots in the workspace have an effect on safety that is not yet fully understood. This work collates pre-existing knowledge on human, technological and organizational factors for human-robot interaction and develops a system dynamics model that captures the complex interactions. Expert consultation in the form of a Delphi study is used to derive a tractable model from pre-existing puzzle pieces. A final model is presented, which contains 10 nodes and 20 relationships containing the three key outcome factors of human-robot interaction, viz. Safety, Efficiency and Sustainability. By combining these factors into a single tractable framework, this model bridges the gap between individual efforts from previous works in the field of robotics.\",\"PeriodicalId\":36827,\"journal\":{\"name\":\"Safety\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/safety9010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/safety9010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
A System-Dynamic Model for Human–Robot Interaction; Solving the Puzzle of Complex Interactions
Cooperative robots in the workspace have an effect on safety that is not yet fully understood. This work collates pre-existing knowledge on human, technological and organizational factors for human-robot interaction and develops a system dynamics model that captures the complex interactions. Expert consultation in the form of a Delphi study is used to derive a tractable model from pre-existing puzzle pieces. A final model is presented, which contains 10 nodes and 20 relationships containing the three key outcome factors of human-robot interaction, viz. Safety, Efficiency and Sustainability. By combining these factors into a single tractable framework, this model bridges the gap between individual efforts from previous works in the field of robotics.