Gaurav Nath, Pramod K. Singh, Pawan Singh Dhapola, Tejas Sharma, Girish P. Patil, Chandradip D. Jadhav, Abhimanyu Singh, Subhrajit Konwar, Serguei V. Savilov, Diksha Singh, M. Z. A. Yahya
{"title":"双能应用的可生物降解甲基纤维素生物聚合物衍生的多孔活性炭","authors":"Gaurav Nath, Pramod K. Singh, Pawan Singh Dhapola, Tejas Sharma, Girish P. Patil, Chandradip D. Jadhav, Abhimanyu Singh, Subhrajit Konwar, Serguei V. Savilov, Diksha Singh, M. Z. A. Yahya","doi":"10.1007/s40243-022-00217-0","DOIUrl":null,"url":null,"abstract":"<div><p>Activated porous carbon was synthesized from methylcellulose biopolymer through a two-step mechanism involving H<sub>3</sub>PO<sub>4</sub> as an activating agent and then thermally carbonized in a tubular furnace under an inert atmosphere at 850 °C. The product was next rinsed with strong HCl, neutralized with deionized water, and dried in an oven at 80 °C. Then, to fully understand the behavior of the activated porous carbon, it was characterized using techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), RAMAN spectroscopy, Brunauer–Emmett–Teller (BET), and thermal gravimetric analysis (TGA). Additionally, we have created dye-sensitive solar cells and an electric double-layer capacitor (EDLC) using this porous carbon produced from methylcellulose (DSSC). We used the above-mentioned prepared porous carbon for the electrode portion of the Electric Double-Layer Capacitor (EDLC) fabrication, and the maximized polymer electrolyte film made from the methyl cellulose (MC) biopolymer combined with 60 wt.% of 1-ethyl-3-methylimidazolium tricyanomethanide ionic liquid (IL), with a maximum conductivity of 1.93 × 10<sup>−2</sup> S/cm, for the electrolyte. The fabricated EDLC device shows a specific capacitance of 60.8 F/gm at 5 mV/s scan rate which was confirmed by cyclovoltammetry and a low-frequency impedance plot in the CH electrochemical workstation. The DSSC device was fabricated using the same porous carbon as a material for the counter-electrode and the same composition polymer electrolyte that had been used in the EDLC as the electrolyte for the DSSC which yields an efficiency of 0.86%. The fill factor and other parameters were also calculated from the JV characteristics that had been characterized and obtained in the solar simulator.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"11 3","pages":"241 - 250"},"PeriodicalIF":3.6000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-022-00217-0.pdf","citationCount":"2","resultStr":"{\"title\":\"Biodegradable methylcellulose biopolymer-derived activated porous carbon for dual energy application\",\"authors\":\"Gaurav Nath, Pramod K. Singh, Pawan Singh Dhapola, Tejas Sharma, Girish P. Patil, Chandradip D. Jadhav, Abhimanyu Singh, Subhrajit Konwar, Serguei V. Savilov, Diksha Singh, M. Z. A. Yahya\",\"doi\":\"10.1007/s40243-022-00217-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Activated porous carbon was synthesized from methylcellulose biopolymer through a two-step mechanism involving H<sub>3</sub>PO<sub>4</sub> as an activating agent and then thermally carbonized in a tubular furnace under an inert atmosphere at 850 °C. The product was next rinsed with strong HCl, neutralized with deionized water, and dried in an oven at 80 °C. Then, to fully understand the behavior of the activated porous carbon, it was characterized using techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), RAMAN spectroscopy, Brunauer–Emmett–Teller (BET), and thermal gravimetric analysis (TGA). Additionally, we have created dye-sensitive solar cells and an electric double-layer capacitor (EDLC) using this porous carbon produced from methylcellulose (DSSC). We used the above-mentioned prepared porous carbon for the electrode portion of the Electric Double-Layer Capacitor (EDLC) fabrication, and the maximized polymer electrolyte film made from the methyl cellulose (MC) biopolymer combined with 60 wt.% of 1-ethyl-3-methylimidazolium tricyanomethanide ionic liquid (IL), with a maximum conductivity of 1.93 × 10<sup>−2</sup> S/cm, for the electrolyte. The fabricated EDLC device shows a specific capacitance of 60.8 F/gm at 5 mV/s scan rate which was confirmed by cyclovoltammetry and a low-frequency impedance plot in the CH electrochemical workstation. The DSSC device was fabricated using the same porous carbon as a material for the counter-electrode and the same composition polymer electrolyte that had been used in the EDLC as the electrolyte for the DSSC which yields an efficiency of 0.86%. The fill factor and other parameters were also calculated from the JV characteristics that had been characterized and obtained in the solar simulator.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"11 3\",\"pages\":\"241 - 250\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-022-00217-0.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-022-00217-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-022-00217-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Biodegradable methylcellulose biopolymer-derived activated porous carbon for dual energy application
Activated porous carbon was synthesized from methylcellulose biopolymer through a two-step mechanism involving H3PO4 as an activating agent and then thermally carbonized in a tubular furnace under an inert atmosphere at 850 °C. The product was next rinsed with strong HCl, neutralized with deionized water, and dried in an oven at 80 °C. Then, to fully understand the behavior of the activated porous carbon, it was characterized using techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), RAMAN spectroscopy, Brunauer–Emmett–Teller (BET), and thermal gravimetric analysis (TGA). Additionally, we have created dye-sensitive solar cells and an electric double-layer capacitor (EDLC) using this porous carbon produced from methylcellulose (DSSC). We used the above-mentioned prepared porous carbon for the electrode portion of the Electric Double-Layer Capacitor (EDLC) fabrication, and the maximized polymer electrolyte film made from the methyl cellulose (MC) biopolymer combined with 60 wt.% of 1-ethyl-3-methylimidazolium tricyanomethanide ionic liquid (IL), with a maximum conductivity of 1.93 × 10−2 S/cm, for the electrolyte. The fabricated EDLC device shows a specific capacitance of 60.8 F/gm at 5 mV/s scan rate which was confirmed by cyclovoltammetry and a low-frequency impedance plot in the CH electrochemical workstation. The DSSC device was fabricated using the same porous carbon as a material for the counter-electrode and the same composition polymer electrolyte that had been used in the EDLC as the electrolyte for the DSSC which yields an efficiency of 0.86%. The fill factor and other parameters were also calculated from the JV characteristics that had been characterized and obtained in the solar simulator.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies