使用K-最近邻算法对不适合居住的房屋修复的受益人进行分类

An-Naas Shahifatun Na’iema, Harminto Mulyo, Nur Aeni Widiastuti
{"title":"使用K-最近邻算法对不适合居住的房屋修复的受益人进行分类","authors":"An-Naas Shahifatun Na’iema, Harminto Mulyo, Nur Aeni Widiastuti","doi":"10.14710/jtsiskom.2021.14110","DOIUrl":null,"url":null,"abstract":"The registrars for rehabilitation programs for uninhabitable settlements are increasing every year. The large data processing of registrants may result in inaccuracies and need a long time to determine livable houses (RTLH) and unfit for habitation (non RTLH). This study aims to apply the K-Nearest Neighbor algorithm in classifying the eligibility of recipients of uninhabitable house rehabilitation assistance. The data used in this study were 1289 data with 13 attributes from the Jepara Regency Public Housing and Settlement Service. Data processing begins with attribute selection, categorization, outlier data cleaning, and data normalization and method application. The proposed system has the best classification at k of 5 with an accuracy of 97.93%, 96.88% precision, 99.53% recall, and an AUC value of 0.964.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm\",\"authors\":\"An-Naas Shahifatun Na’iema, Harminto Mulyo, Nur Aeni Widiastuti\",\"doi\":\"10.14710/jtsiskom.2021.14110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The registrars for rehabilitation programs for uninhabitable settlements are increasing every year. The large data processing of registrants may result in inaccuracies and need a long time to determine livable houses (RTLH) and unfit for habitation (non RTLH). This study aims to apply the K-Nearest Neighbor algorithm in classifying the eligibility of recipients of uninhabitable house rehabilitation assistance. The data used in this study were 1289 data with 13 attributes from the Jepara Regency Public Housing and Settlement Service. Data processing begins with attribute selection, categorization, outlier data cleaning, and data normalization and method application. The proposed system has the best classification at k of 5 with an accuracy of 97.93%, 96.88% precision, 99.53% recall, and an AUC value of 0.964.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jtsiskom.2021.14110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.2021.14110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不适合居住的定居点的康复项目的登记人数每年都在增加。注册人的大量数据处理可能会导致不准确,并且需要很长时间来确定宜居房屋(RTLH)和不适合居住的房屋(非RTLH)。本研究旨在应用K-最近邻算法对不适合居住的房屋康复援助接受者的资格进行分类。本研究中使用的数据是来自杰帕拉县公共住房和安置服务局的1289个具有13个属性的数据。数据处理从属性选择、分类、异常数据清理、数据规范化和方法应用开始。所提出的系统在k为5时具有最佳分类,准确率为97.93%,准确度为96.88%,召回率为99.53%,AUC值为0.964。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm
The registrars for rehabilitation programs for uninhabitable settlements are increasing every year. The large data processing of registrants may result in inaccuracies and need a long time to determine livable houses (RTLH) and unfit for habitation (non RTLH). This study aims to apply the K-Nearest Neighbor algorithm in classifying the eligibility of recipients of uninhabitable house rehabilitation assistance. The data used in this study were 1289 data with 13 attributes from the Jepara Regency Public Housing and Settlement Service. Data processing begins with attribute selection, categorization, outlier data cleaning, and data normalization and method application. The proposed system has the best classification at k of 5 with an accuracy of 97.93%, 96.88% precision, 99.53% recall, and an AUC value of 0.964.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1