细胞内抗体和生物降解剂:超越小分子,再回来

IF 4.7 3区 工程技术 Q2 ENGINEERING, BIOMEDICAL Current Opinion in Biomedical Engineering Pub Date : 2023-09-01 DOI:10.1016/j.cobme.2023.100455
D. Cardella, D. Sanchez-Guzman, T.H. Rabbitts
{"title":"细胞内抗体和生物降解剂:超越小分子,再回来","authors":"D. Cardella,&nbsp;D. Sanchez-Guzman,&nbsp;T.H. Rabbitts","doi":"10.1016/j.cobme.2023.100455","DOIUrl":null,"url":null,"abstract":"<div><p>Intracellular antibodies have been deployed as powerful research tools for the last 20 years for inhibition of proteins to convey specific information about protein function. Accordingly, intracellular antibodies have been used for target validation in oncology and were the first reagents to inhibit “undruggable” targets, such as RAS mutants and LMO2. Their versatility allows addition of effector functions to invoke cell phenotypes following target engagement inside cells. Moreover, the paratope–epitope interaction of intracellular antibodies has been recently exploited to develop small molecule surrogates. We will discuss the flexibility that intracellular antibodies provide for discovery research and for new generations of therapeutics in all clinical indications where an aberrant protein expression is involved (oncology, neurological disease, infection, inflammation).</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"27 ","pages":"Article 100455"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intracellular antibodies and biodegraders: Beyond small molecules and back again\",\"authors\":\"D. Cardella,&nbsp;D. Sanchez-Guzman,&nbsp;T.H. Rabbitts\",\"doi\":\"10.1016/j.cobme.2023.100455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Intracellular antibodies have been deployed as powerful research tools for the last 20 years for inhibition of proteins to convey specific information about protein function. Accordingly, intracellular antibodies have been used for target validation in oncology and were the first reagents to inhibit “undruggable” targets, such as RAS mutants and LMO2. Their versatility allows addition of effector functions to invoke cell phenotypes following target engagement inside cells. Moreover, the paratope–epitope interaction of intracellular antibodies has been recently exploited to develop small molecule surrogates. We will discuss the flexibility that intracellular antibodies provide for discovery research and for new generations of therapeutics in all clinical indications where an aberrant protein expression is involved (oncology, neurological disease, infection, inflammation).</p></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"27 \",\"pages\":\"Article 100455\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451123000119\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451123000119","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在过去的20年里,细胞内抗体作为一种强大的研究工具被用于抑制蛋白质以传递蛋白质功能的特定信息。因此,细胞内抗体已被用于肿瘤学的靶标验证,并且是第一批抑制“不可药物”靶标的试剂,如RAS突变体和LMO2。它们的多功能性允许添加效应功能,以调用细胞内目标接合后的细胞表型。此外,细胞内抗体的旁位-表位相互作用最近被用于开发小分子替代品。我们将讨论细胞内抗体在涉及异常蛋白表达的所有临床适应症(肿瘤、神经系统疾病、感染、炎症)中为发现研究和新一代治疗提供的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intracellular antibodies and biodegraders: Beyond small molecules and back again

Intracellular antibodies have been deployed as powerful research tools for the last 20 years for inhibition of proteins to convey specific information about protein function. Accordingly, intracellular antibodies have been used for target validation in oncology and were the first reagents to inhibit “undruggable” targets, such as RAS mutants and LMO2. Their versatility allows addition of effector functions to invoke cell phenotypes following target engagement inside cells. Moreover, the paratope–epitope interaction of intracellular antibodies has been recently exploited to develop small molecule surrogates. We will discuss the flexibility that intracellular antibodies provide for discovery research and for new generations of therapeutics in all clinical indications where an aberrant protein expression is involved (oncology, neurological disease, infection, inflammation).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Biomedical Engineering
Current Opinion in Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
2.60%
发文量
59
期刊最新文献
Neuromodulation for the treatment of sexual dysfunction: An opportunity for the field Enhancing resilience against adversarial attacks in medical imaging using advanced feature transformation training The prospect of electroceutical intervention and its implementation toward intractable neuromuscular diseases Editorial Board Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1