{"title":"稳健的二阶可旋转设计总是适用于某些寿命分布","authors":"Jinseog Kim, R. Das, Poonam Singh, Youngjo Lee","doi":"10.29220/csam.2021.28.6.595","DOIUrl":null,"url":null,"abstract":"Recently a few articles have derived robust first-order rotatable and D-optimal designs for the lifetime response having distributions gamma, lognormal, Weibull, exponential assuming errors that are correlated with di ff erent correlation structures such as autocorrelated, intra-class, inter-class, tri-diagonal, compound symmetry. Practically, a first-order model is an adequate approximation to the true surface in a small region of the explana-tory variables. A second-order model is always appropriate for an unknown region, or if there is any curvature in the system. The current article aims to extend the ideas of these articles for second-order models. Invariant (free of the above four distributions) robust (free of correlation parameter values) second-order rotatable designs have been derived for the intra-class and inter-class correlated error structures. Second-order rotatability conditions have been derived herein assuming the response follows non-normal distribution (any one of the above four distributions) and errors have a general correlated error structure. These conditions are further simplified under intra-class and inter-class correlated error structures, and second-order rotatable designs are developed under these two structures for the response having anyone of the above four distributions. It is derived herein that robust second-order rotatable designs depend on the respective error variance covariance structure but they are independent of the correlation parameter values, as well as the considered four response lifetime distributions.","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust second-order rotatable designs invariably applicable for some lifetime distributions\",\"authors\":\"Jinseog Kim, R. Das, Poonam Singh, Youngjo Lee\",\"doi\":\"10.29220/csam.2021.28.6.595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently a few articles have derived robust first-order rotatable and D-optimal designs for the lifetime response having distributions gamma, lognormal, Weibull, exponential assuming errors that are correlated with di ff erent correlation structures such as autocorrelated, intra-class, inter-class, tri-diagonal, compound symmetry. Practically, a first-order model is an adequate approximation to the true surface in a small region of the explana-tory variables. A second-order model is always appropriate for an unknown region, or if there is any curvature in the system. The current article aims to extend the ideas of these articles for second-order models. Invariant (free of the above four distributions) robust (free of correlation parameter values) second-order rotatable designs have been derived for the intra-class and inter-class correlated error structures. Second-order rotatability conditions have been derived herein assuming the response follows non-normal distribution (any one of the above four distributions) and errors have a general correlated error structure. These conditions are further simplified under intra-class and inter-class correlated error structures, and second-order rotatable designs are developed under these two structures for the response having anyone of the above four distributions. It is derived herein that robust second-order rotatable designs depend on the respective error variance covariance structure but they are independent of the correlation parameter values, as well as the considered four response lifetime distributions.\",\"PeriodicalId\":44931,\"journal\":{\"name\":\"Communications for Statistical Applications and Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications for Statistical Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29220/csam.2021.28.6.595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications for Statistical Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29220/csam.2021.28.6.595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Robust second-order rotatable designs invariably applicable for some lifetime distributions
Recently a few articles have derived robust first-order rotatable and D-optimal designs for the lifetime response having distributions gamma, lognormal, Weibull, exponential assuming errors that are correlated with di ff erent correlation structures such as autocorrelated, intra-class, inter-class, tri-diagonal, compound symmetry. Practically, a first-order model is an adequate approximation to the true surface in a small region of the explana-tory variables. A second-order model is always appropriate for an unknown region, or if there is any curvature in the system. The current article aims to extend the ideas of these articles for second-order models. Invariant (free of the above four distributions) robust (free of correlation parameter values) second-order rotatable designs have been derived for the intra-class and inter-class correlated error structures. Second-order rotatability conditions have been derived herein assuming the response follows non-normal distribution (any one of the above four distributions) and errors have a general correlated error structure. These conditions are further simplified under intra-class and inter-class correlated error structures, and second-order rotatable designs are developed under these two structures for the response having anyone of the above four distributions. It is derived herein that robust second-order rotatable designs depend on the respective error variance covariance structure but they are independent of the correlation parameter values, as well as the considered four response lifetime distributions.
期刊介绍:
Communications for Statistical Applications and Methods (Commun. Stat. Appl. Methods, CSAM) is an official journal of the Korean Statistical Society and Korean International Statistical Society. It is an international and Open Access journal dedicated to publishing peer-reviewed, high quality and innovative statistical research. CSAM publishes articles on applied and methodological research in the areas of statistics and probability. It features rapid publication and broad coverage of statistical applications and methods. It welcomes papers on novel applications of statistical methodology in the areas including medicine (pharmaceutical, biotechnology, medical device), business, management, economics, ecology, education, computing, engineering, operational research, biology, sociology and earth science, but papers from other areas are also considered.