脉冲星磁层及其辐射

IF 26.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Annual Review of Astronomy and Astrophysics Pub Date : 2022-08-18 DOI:10.1146/annurev-astro-052920-112338
A. Philippov, M. Kramer
{"title":"脉冲星磁层及其辐射","authors":"A. Philippov, M. Kramer","doi":"10.1146/annurev-astro-052920-112338","DOIUrl":null,"url":null,"abstract":"The discovery of pulsars opened a new research field that allows studying a wide range of physics under extreme conditions. More than 3,000 pulsars are currently known, including especially more than 200 of them studied at gamma-ray frequencies. By putting recent insights into the pulsar magnetosphere in a historical context and by comparing them to key observational features at radio and high-energy frequencies, we show the following: ▪ Magnetospheric structure of young energetic pulsars is now understood. Limitations still exist for old nonrecycled and millisecond pulsars. ▪ The observed high-energy radiation is likely produced in the magnetospheric current sheet beyond the light cylinder. ▪ There are at least two different radio emission mechanisms. One operates in the inner magnetosphere, whereas the other one works near the light cylinder and is specific to pulsars with the high magnetic field strength in that region. ▪ Radio emission from the inner magnetosphere is intrinsically connected to the process of pair production, and its observed properties contain the imprint of both the geometry and propagation effects through the magnetospheric plasma. We discuss the limitations of our understanding and identify a range of observed phenomena and physical processes that still await explanation in thefuture. This includes connecting the magnetospheric processes to spin-down properties to explain braking and possible evolution of spin orientation, building a first-principles model of radio emission and quantitative connections with observations.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":null,"pages":null},"PeriodicalIF":26.3000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Pulsar Magnetospheres and Their Radiation\",\"authors\":\"A. Philippov, M. Kramer\",\"doi\":\"10.1146/annurev-astro-052920-112338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of pulsars opened a new research field that allows studying a wide range of physics under extreme conditions. More than 3,000 pulsars are currently known, including especially more than 200 of them studied at gamma-ray frequencies. By putting recent insights into the pulsar magnetosphere in a historical context and by comparing them to key observational features at radio and high-energy frequencies, we show the following: ▪ Magnetospheric structure of young energetic pulsars is now understood. Limitations still exist for old nonrecycled and millisecond pulsars. ▪ The observed high-energy radiation is likely produced in the magnetospheric current sheet beyond the light cylinder. ▪ There are at least two different radio emission mechanisms. One operates in the inner magnetosphere, whereas the other one works near the light cylinder and is specific to pulsars with the high magnetic field strength in that region. ▪ Radio emission from the inner magnetosphere is intrinsically connected to the process of pair production, and its observed properties contain the imprint of both the geometry and propagation effects through the magnetospheric plasma. We discuss the limitations of our understanding and identify a range of observed phenomena and physical processes that still await explanation in thefuture. This includes connecting the magnetospheric processes to spin-down properties to explain braking and possible evolution of spin orientation, building a first-principles model of radio emission and quantitative connections with observations.\",\"PeriodicalId\":8138,\"journal\":{\"name\":\"Annual Review of Astronomy and Astrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":26.3000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Astronomy and Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-astro-052920-112338\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-astro-052920-112338","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 18

摘要

脉冲星的发现开辟了一个新的研究领域,可以在极端条件下研究广泛的物理学。目前已知的脉冲星有3000多颗,特别是其中200多颗是在伽马射线频率下研究的。通过将脉冲星磁层的最新见解放在历史背景下,并将其与无线电和高能频率的关键观测特征进行比较,我们展示了以下内容:▪ 年轻高能脉冲星的磁层结构现在已经被了解。老的非周期脉冲星和毫秒脉冲星仍然存在局限性。▪ 观测到的高能辐射很可能是在光柱外的磁层电流片中产生的。▪ 至少有两种不同的无线电发射机制。一个在内部磁层工作,而另一个在光柱附近工作,是该区域高磁场强度脉冲星特有的。▪ 内部磁层的无线电发射与成对产生的过程有着内在的联系,其观测到的特性包含了通过磁层等离子体的几何和传播效应的印记。我们讨论了我们理解的局限性,并确定了一系列观察到的现象和物理过程,这些现象和过程仍有待于未来的解释。这包括将磁层过程与自旋下降特性联系起来,以解释制动和自旋方向的可能演变,建立无线电发射的第一性原理模型以及与观测的定量联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pulsar Magnetospheres and Their Radiation
The discovery of pulsars opened a new research field that allows studying a wide range of physics under extreme conditions. More than 3,000 pulsars are currently known, including especially more than 200 of them studied at gamma-ray frequencies. By putting recent insights into the pulsar magnetosphere in a historical context and by comparing them to key observational features at radio and high-energy frequencies, we show the following: ▪ Magnetospheric structure of young energetic pulsars is now understood. Limitations still exist for old nonrecycled and millisecond pulsars. ▪ The observed high-energy radiation is likely produced in the magnetospheric current sheet beyond the light cylinder. ▪ There are at least two different radio emission mechanisms. One operates in the inner magnetosphere, whereas the other one works near the light cylinder and is specific to pulsars with the high magnetic field strength in that region. ▪ Radio emission from the inner magnetosphere is intrinsically connected to the process of pair production, and its observed properties contain the imprint of both the geometry and propagation effects through the magnetospheric plasma. We discuss the limitations of our understanding and identify a range of observed phenomena and physical processes that still await explanation in thefuture. This includes connecting the magnetospheric processes to spin-down properties to explain braking and possible evolution of spin orientation, building a first-principles model of radio emission and quantitative connections with observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Astronomy and Astrophysics
Annual Review of Astronomy and Astrophysics 地学天文-天文与天体物理
CiteScore
54.80
自引率
0.60%
发文量
14
期刊介绍: The Annual Review of Astronomy and Astrophysics is covers significant developments in the field of astronomy and astrophysics including:The Sun,Solar system and extrasolar planets,Stars,Interstellar medium,Galaxy and galaxies,Active galactic nuclei,Cosmology,Instrumentation and techniques, History of the development of new areas of research.
期刊最新文献
Theory and Observation of Winds from Star-Forming Galaxies A Tale of Many H0 Molecular Gas and the Star-Formation Process on Cloud Scales in Nearby Galaxies The Character of M Dwarfs Three-Dimensional Non–Local Thermodynamic Equilibrium Abundance Analyses of Late-Type Stars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1