{"title":"分散问题求解工作证明中的难度标度","authors":"P. Philippopoulos, A. Ricottone, Carlos G. Oliver","doi":"10.5195/ledger.2020.194","DOIUrl":null,"url":null,"abstract":"We propose DIPS (Difficulty-based Incentives for Problem Solving), a simple modification of the Bitcoin proof-of-work algorithm that rewards blockchain miners for solving optimization problems of scientific interest. The result is a blockchain which redirects some of the computational resources invested in hash-based mining towards scientific computation, effectively reducing the amount of energy ‘wasted’ on mining. DIPS builds the solving incentive directly in the proof-of-work by providing a reduction in block hashing difficulty when optimization improvements are found. A key advantage of this scheme is that decentralization is not greatly compromised while maintaining a simple blockchain design. We study two incentivization schemes and provide simulation results showing that DIPS is able to reduce the amount of hash-power used in the network while generating solutions to optimization problems.","PeriodicalId":36240,"journal":{"name":"Ledger","volume":"5 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Difficulty Scaling in Proof of Work for Decentralized Problem Solving\",\"authors\":\"P. Philippopoulos, A. Ricottone, Carlos G. Oliver\",\"doi\":\"10.5195/ledger.2020.194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose DIPS (Difficulty-based Incentives for Problem Solving), a simple modification of the Bitcoin proof-of-work algorithm that rewards blockchain miners for solving optimization problems of scientific interest. The result is a blockchain which redirects some of the computational resources invested in hash-based mining towards scientific computation, effectively reducing the amount of energy ‘wasted’ on mining. DIPS builds the solving incentive directly in the proof-of-work by providing a reduction in block hashing difficulty when optimization improvements are found. A key advantage of this scheme is that decentralization is not greatly compromised while maintaining a simple blockchain design. We study two incentivization schemes and provide simulation results showing that DIPS is able to reduce the amount of hash-power used in the network while generating solutions to optimization problems.\",\"PeriodicalId\":36240,\"journal\":{\"name\":\"Ledger\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ledger\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5195/ledger.2020.194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ledger","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5195/ledger.2020.194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
Difficulty Scaling in Proof of Work for Decentralized Problem Solving
We propose DIPS (Difficulty-based Incentives for Problem Solving), a simple modification of the Bitcoin proof-of-work algorithm that rewards blockchain miners for solving optimization problems of scientific interest. The result is a blockchain which redirects some of the computational resources invested in hash-based mining towards scientific computation, effectively reducing the amount of energy ‘wasted’ on mining. DIPS builds the solving incentive directly in the proof-of-work by providing a reduction in block hashing difficulty when optimization improvements are found. A key advantage of this scheme is that decentralization is not greatly compromised while maintaining a simple blockchain design. We study two incentivization schemes and provide simulation results showing that DIPS is able to reduce the amount of hash-power used in the network while generating solutions to optimization problems.